
" : -- /? i_'_ t "_ C_/'2,#, ,'_7_
NASA- CR- 1 90 8 q 0 ::. _

/h -4/- ,2-fd_.L

.... /_/__

An Adaptive_°Grid Algorithm /-?-/27

for One-DimensionaiNonlinear Equations

.... Submitted to:

Nat ional Aeronaut S pace Administ rat ion
Ames Research Center

Moffett Field, California

An Adaptive Grid Algorithm

for One-Dimensional Nonlinear Equations

Submitted to:

National Aeronautics and Space Administration
Ames Research Center

Moffett Field, California

Submitted by:

William E. Gutierrez

and

Richard G. Hills

Department of Mechanical Engineering

New Mexico State University

Las Cruces, New Mexico 88003

Final Report

Contract _ NAG 2-474

Grant # NAG 70070

w
August 1990

w

ABSTRACT

w

v

L.

w

Richards' equation, which models the flow of liquid through unsaturated

porous media, is highly nonlinear and difficult to solve. Steep gradients in

the field variables require the use of fine grids and small time step sizes. The

numerical instabilities caused by the nonlinearities often require the use of

iterative methods such as Picard or Newton iteration. These difficulties re-.......

suÂt in large CPU requirements in solving Richards' equation. With this in

mind, adaptive and multigrid methods are investigated for use with nonlinear

equations such as Richards' equation. Attention is focused on one-dimensional

transient problems.

To investigate the use of nmltigrid and adaptive grid methods, a series

of problems are studied. First, a multigrid program is developed and used to

solve an ordinary differential equation, demonstrating the efficiency with which

low and high frequency errors are smoothed out. The multigrid algorithm and

an adaptive grid algorithm is used to-s01ve one-dimensional transient partial

differential equations, such as the diffusive and convective-diffusion equations.

The performance of these programs are compared to that of the Gauss-Seidel

and tridiagonal methods. Tile adaptive and multigrid schemes outperformed

the Gauss-Seidel algorithm, but were not as fast as the tridiagonal method.

The adaptive grid scheme solved the problems slightly faster than the multi-

grid method.

11

!

=

w

w

i

To solve nonlinear problems, Picard iterations are introduced into the

adaptive grid and tridiagonal methods. Burgers' equation is used as a test

problem for the two algorithms. Both methods obtain solutions of compa-

rable accuracy for similar time increments. For the Burgers' equation, the

adaptive grid method finds the solution approximately three times faster than

the tridiagonal method. Finally, both schemes are used to solve the water

content formulation of the Richards' equation. For this problem, the adaptive

grid method obtains a more accurate solution in fewer work units and less

computation time than required by the tridiagonal method. The performance

of the adaptive grid method tends to degrade as the solution process proceeds

in time, but still remains faster than the tridiagonal scheme.

w

w

w

_- - 111

w

Table of Contents

L

u

w

List of Tables

List of Figures

Nomenclature

Page

vi

vii

X

Chapter 1 - Introd,wti_)i1 1

1.1 Background 1

1.2 Scope 2

Chapter 2 - Literat.ure Review 4

Chapter 3 - Theory 11

3.1 FAS .X[ultigrid %[ethod 12

3.2 Adaptive Grid %[cthod 29

3.3 Transient Algorithms 36

3.4 Nonlinear Adaptive Grid Algorithm 38

Chapter 4 - Test. Problems 42

4.1 Test Problem #1 42

4.2 Test Piol>l¢'m _2

4.3 Test Prol)leni #3

4.4 Test Problenl #4

4.5 Test Problem #5

.................... 44

.................... 45

..................... 47

.................... 49

iv

w

m

7- 2
= =

m

L

i

Chapter 5 - IRe._ults 54

5.1 Results fl)r Test Probhml #I 55

5.2 Results for Test Problem #2 65

5.3 Results for Test Problmn :/#3 72

5.4 Results for Tcsi_ Problem #4 77

5.5 Results %r Test Probh'm :/#5 88

Chapter 6 - ('oncl,lsions nnd Recommendations 107

6.1 Conclusions 107

6.2 Recommendations 111

References 114

w

7

v

I

m

List of Tables

u

Table

5.1.1

5.1.2

5.1.3

5.2.1

5.3.1

5.4.1

5.4.2a

5.4.2b

5.4.3

5.5.1

5.5.2

5.5.3

5.5.4

5.5.5

5.5.6

6.1.1

Results for Test Problem #1a

Results for Test Pt'oblem #1b

Page

............... 56

............... 56

Test Problem #1a, Results 59

Test Problem #2, Multigrid Results 67

Test Problem #3 Results; Time = 0.050 74

Test Problem #4 Results, Variations in toler S0

Test Problem #4 1-1csults, \5n'iations in e 85

Test Prot_lem #4 Results, :\iore Variations in e

Test Problem #4 Results, Time Increment Varied

Test Problem #5, Results; 481 Fine Node Grid

Test Problem #5, Results; 641 Fine Node Grid

Test Problem #5, Results for Time = 5 days

Test Problem #5, Results for Time = 15 days 9S

Test Problem #5, Results fin' Time = 35 days 99

Results Fox" the AIternate Tridiagonat Method 106

Summary of Representative Results 110

....... 85

...... 87

....... 91

....... 93

........ 97

vi

u

m

m

m

w

m

Figures

3.1.1

3.1.2

3.1.3

3.1.4

3.1.5

3.1.6

3.1.7

3.2.1

3.2.2

3.4.1

3.4.2

3.4.3

4.5.1

5.1.1

5.1.2

5.1.3

5.1.4

5.1.5

List of Figures

Page

Convergence of High and Low Frequency Terms

Using the Gauss-Seidel .Method 15

Aliasing 17

Linear Interpolation 23

Cubic Interpolation 23

Direct Injection 24

Weighted Average (full weighting) 24

Multigrid Flowchart 26

Adaptive Grid Flowchart 31

Adaptive Grids 35

Cubic Interpolation at a Front 39

Linear Interpolation at a Front 39

Nonlinear Adaptive Grid Algorithm 41

Finite Difference Discretization with Nodes

Centered in Grid Vc_hunes 53

Solution to Problem #la 57

Effects of Varying the N_mlber of Multigrid Levels 57

Solution to Problem #1b, Using Original Switching Parameters . 62

Solution to Problem #lb, Using Alternate Switching Parameters 62

Effects of Varying the Sw{tdl_]lg Parameters 64

VII

u

L

L .

m

m

u

b

5.2.1

5.2.2

5.2.3

5.2.4

5.3.1

5.3.2

5.4.1

5.4.2

5.4.3

5.4.4

5.4.5

5.4.6

5.5.1

5.5.2

5.5.3

5.5.4

5.5.5

Multigrid Solution to Problem #2;

Analytical and Multigrid Solutions Overlie

Adaptive Grid Solution to Problem :_2;

Analytical and Multigrid Solutions Overlie

Work - Case _1

Work - Case #2

........ 66

........ 66

..................... 69

.... :_2Z.

..................... 69

!i_2!_!!_:_ :::: ::

Adaptive Grid Sohltion t_i Pri;l)lom #3, Snapshot View 73

Adaptive Grid Sohltion to Problenl #3, Time Histories;

Analytical and _[ultigrid Solutions Overlie 73

Multigrid Solution to Problem _3, Snapshot. View 76

Multigrid Solution to Problem #3, Time Histories;

Analytical and Multigrid Solutions Overlie 76

Adaptive Grid Solution to Problem #4, Burgers' Equation . 79

Work vs. Log(e), Burgers' Equation 83

CPU Time vs. Log(e), Burgers' Equation 83

1 1 , , , •Effects on the Solution Ca.uscd)y Varying e 84

Diffusion of Front Due to Large Time Increments 84

CPU Time vs. Time hicrement, Burgers' Equation 86

Adaptive Grid vs. Tridiagonal Solution to Problem #5,

Richards' Equation 89

Adaptive Grids Used at Time = 15 Days 95

Adaptive Grid Residual Error, Case 1 100

Adaptive Grid Residual Error, Case 2 100

Adaptive Grid Residual Error, Case 3 101

w

viii

5.5.6

5.5.7

5.5.8

CPU Time vs. Time Step; Ilichards' Equation
at Time = 5 days 104

CPU Time vs. Time Step; Richards' Equation
at Time = 15 days 104

CPU Time vs. Time Step; Richards' Equation
at Time = 35 days 105

=

i

ix

= 12

m

D

C

e

e k

eAG

F,f(x)

F H

F h

fk

G H

G h

H

h

ik+l
k

k

i

Nomenclature

English

- coefficient relating volumetric water content and tension

- norm of the residual function

- residual norm on grid level k

- residual norm obtained from the adaptive grid method

- norm of the residuals prior to last relaxation

- original forcing function (right hand side)

- discrete approximation of the original forcing function

on a coarse grid H

- discrete approximation of the original forcing function

on a fine grid h

discrete forcing function on grid level h

- denotes a coarse, uniformly spaced grid

- denotes a fine, uniformly spaced grid

- uniform spacing between nodes on a coarse grid

- uniform spacing between nodes on a fine grid

- linear interpolation from grid level k to k + 1

- interpolation (restriction) from grid level k + 1 to k

- cubic interpolation to the next finer grid

- positive integer denoting a specific node

x

u

u

J

J

K

K_

k

L

L H

L h

£

l

m

rh

(n

P

q

F

F h

r k

- positive integer used in identifying time steps

- number of time increments used for 'local time refinements'

- hydraulic conductivity

- saturated hydraulic conductivity of soil

- positive integer used to identify a grid level

- differential operator

- discrete differential operator on a coarse grid H

- discrete differential operator on a fine grid h

- size of the domain

- finest grid level that has been visited by the algorithm

- positive integer denoting the finest grid level

- order of differential equations being solved

- model parameter used with problem #5

- number of nodes on the grid of interest;

- model parameter used with problern #5

- order of the approximation scheme

- mesh size ratio between two adjacent grid levels

- flux boundary condition

- number of relaxation sweeps on each finer level per multigrid cycle

- residual function (vector of residual values)

- residual function on grid level h

xi

i ,

e__j.

w

I

w

_m

u

i

=

w

7 k

Se

t

toler

_olerce

At

U,u(z)

U u

U h

u

U H

U h

•_-._H _ ._h

V

X

Ax

Axk-_

- residual function on grid level k prior to the last relaxation sweep

- water retention curve

- time

- convergence criteria used in the nonlinear adaptive grid algorithm

to determine whether more Picard iterations are needed

- tolerance value used with the nonlinear tridiagonal method

to detect a premature convergence of the residual onto

a value greater than that desired

- time increment

- true solution

- discrete approximation of the true solution on a coarse grid H

- discrete approximation of the true solution on a fine grid h

- field variable for problems #1 through _4

- current approximate of the solution on a coarse grid H

- current approximate of the solution on a fine grid h

- approximate solution prior to the previous relaxation

- error present in the approximate solution u

- errors present prior to the last relaxation

- spatial dimension

- distance between nodes

- distance between nodes on grid level k - 1

xii

OL

0

Greek

- multigrid 'switching parameter' used to determine the convergence

criteria for the finest level visited

- model parameter used in problem _5

- multigrid 'switching parameter' governing the convergence criteria

on coarser grid which have been previously visited

- convergence criteria

- 'stopping factor' used to detect an unacceptable slowing of the

convergence rate

- volumetric water content

81- - residual water content

#

Os

T H ' T h

T k

Tik-- 1

- convergence rate

- smoothing factor

- spectral convergence rate

- saturated water content

- estimate of the local truncation error

- relative (local) truncation error

- current estimate of the truncation error

- relative truncation error on level k - 1, node i

__o
w

xiii

Chapter 1

Introduction

_=

=

w

1.1 Background

Many partial differential equations exist which are very difficult to solve

analytically. The solution to such problems can often be found by numeri-

cal methods, such as through the use of finite differences. The use of finite

differences leads to systems of linear or nonlinear algebraic equations. Solv-

ing the resulting system of equations by conventional relaxation methods is

CPU intensive, especially for large systems. The application of the multi-level

technique to conventional relaxation methods accelerates the rate at which

they converge to the solution. As a result, the nmltigrid technique has found

widespread use for the solution of multi-dimensional partial differential equa-

tions which arise in computational fluid dynamics and physics. A feature of

the multigrid technique is the ease by which it can be modified to handle adap-

tive grids, which are ideally suited for problems with steep local gradients in

the state variables.

-- °

h

Like multigrid methods, adaptive grid algorithms also use a sequence of

finer and finer uniform grids to solve a problem, but, may restrict the finer

grids to small portions of the domain. This method seeks to identify those

portions of the domain requiring the use of the finer grids in order to achieve

1

L_

a desired accuracy, and then solves the problem within these regions using

the finer grids. Such regions often occur in problems which exhibit steep

gradients in the solution [Hedstrom and Rodrique, 1982]. Thus, the adaptive

grid method appears to be well suited toward finding the solution to problems

possessing these steep local gradients.

1.2 Scope

The aim of this work is to first investigate the use of the multigrid

and adaptive grid techniques [Brandt, 1977] for finding the solution to one-

dimensional, differential equations which may contain steep local gradients.

Then, the most promising method is adapted to find the solution to two

one-dimensional nonlinear problems. The nonlinear problems are the viscous

Burgers' equation, which contains a moving front with steep gradients in the

solution; and, the water content fornmlation of the Richards' equation mod-

elling one-dimensional liquid flow in unsaturated soils. The Richards' equation

is highly nonlinear and also possesses solutions which contain moving fronts

with very steep gradients.

The application of the multigrid algorithm is presented first for a one-

dimensional steady state diffusion problem. It is then expanded to include

one-dimensional transient problems. The time-dependent problems are also

solved using the adaptive grid method. The adaptive grid technique is then

applied toward solving the nonlinear Burgers' equation.

2

w

The resulting algorithms are verified by comparing their results to those

obtained using other numerical methods. Where possible, the numerical solu-

tions are also verified by comparison to the analytical solutions. The efficiency

of the algorithms axe determined by comparing the CPU time needed to solve

the problem to that needed for a conventional relaxation method and direct

solver.

Finally, the adaptive grid method is applied to the nonlinear one-

dimensional water content formulation of the Richards equation. The adaptive

grid method has not previously been applied to this problem. The adaptive

grid solution is compared to that obtained using a tridiagonal method em-

ploying Picard iterations.

w

m

u

w

Chapter 2

Literature Review

= :

L

LJ

L_

Usually, when solving a Partial Differential Equation (PDE) by numerical

means, one first discretizes the problem onto a fine grid. This often results in

a very large system of sinmltaneous algebraic equations. The resulting system

of equations is then solved using an iterative solver. Such a method is easy to

implement into a computer program, but iterative solvers used in this manner

do have some problems. One such problem is the slow convergence of the

solution due to inefficiencies in resolving low frequency errors (errors with a

long wavelength). Another is the lack of interplay between the discretization

and the solution processes which overlooks useful information [Brandt, 1977].

By performing a Fourier analysis of the problem on a fine grid, it becomes

evident that high frequency errors are quickly resolved in just a few relax-

ation sweeps and that the low frequency errors converge very slowly. After

three relaxations the high fl'equency error terms are reduced by almost an

order of magnitude [Brandt, 1977, 1979]. This leads to the multigrid method,

which discretizes the problem onto a sequence of coarser and coarser grids.

The multigrid method is a general technique by which the performance (in

terms of CPU time) of an iterative (conventional) solver is improved. Multi-

grid techniques normally solve an elliptic PDE in O(n) operations whereas

4

i..I

m

iterative solvers such as Gauss-Seidelrequire O(n 2) operations [Brandt, 1977;

Wesseling, 1982].

The basic n-mltigrid method is a systematic scheme uniting the solution

process on several grid levels by combining relaxation sweeps with corrections

involving the current estimates of the solution on both the fine and coarse

grids. The coarse grids are used to provide the finer grids with an estimate

of the solution containing the low frequency information, which is difficult

(computationally expensive) to obtain on the fine grids. The fine grids are

used to resolve the high frequency errors in the solution, which are then used

to improve the coarse grid solution. Thus, the interactions between the fine

and coarse grids serve to improve the performance of an iterative solver.

One basic multigrid method is named the Coarse Grid Correction (CGC)

scheme. This scheme begins by so!ring the problem of interest only on the

finest grid, with the coarser grids used to soIve residual equations. The coarse

grid solution to the residual equations is then used as a correction to the

solution on the finer grids [Alcouffe et al., 1981; Brandt, 1977; Jesperson,

1984]. The CGC method is primarily for linear problems and cannot be applied

to composite (or adaptive) grids. Extending CGC for use with nonlinear

problems is "messy" [Brandt, 1979, 1982].

Another class of multigrid methods are the Full Multigrid (FMG) algo-

rithms. These methods discretize and solve the problem of interest onto all

5

m

grid levels. They begin the solution process on the coarsest grid by obtaining

the first approximation to the solution. The full multigrid methods have some

very attractive features as they can solve a problem to the level of truncation

errors and tend to be very forgiving of small mistakes. For example, concep-

tual or programming errors often just slow down the rate of convergence and

have no effect on the actual solution [Brandt, 1982].

=

One such commonly used method is the Full Approximation Scheme

(FAS) which is also referred to as the Full Approximation Storage method.

This scheme is similar to CGC except that the problem of interest is solved

on all grid levels. As before, the coarse grids are used to correct the solution

on the finer grids. FAS also <lifters in that the fine grid solution is used to

modify the coarse grid forcing function so as to coincide with the fine grid

solution. The full approximation scheme has several advantages and provides

a general algorithm for both linear and nonlinear problems. When used to

solve nonlinear problems, global linearization is not required. The only lin-

earization needed is the local linearization employed by the relaxation routine.

FAS can also handle "accommodative" grids (adaptive and composite grids)

and is easily modified to do so. It also gives a good estimate of the truncation

error which is useful in defining stopping and adaptive grid criteria [Brandt,

1977, 1979, 1982].

Adaptive and composite grids are used to reduce the computation time

6

I

w

required to solve certain problems and lead to non-uniform grids on a global

scale. "Non-uniform resolution is needed in many, perhaps most, practical

problems" [Brandt, 1982]. Both composite and adaptive grids may be viewed

as a series of uniform grids which do not necessarily extend over the entire

domain. The finer grids are needed near singularities, non-smooth boundaries,

wave fronts, shocks, etc.

One can define composite grids as a union of uniform subgrids, usually

positioned such that every node on the coarse grid corresponds to a node

(usually every other node) on the next finer grid. It is important to note that

these subgrids do not have to cover the entire domain, and that a subgrid may

extend over a portion of the domain covered by another subgrid. Subgrids in

different subdomains may also have different levels of refinement (node spac-

ing). This method is flexible in that local grid refinement is done by extending

subregions. Use of composite grid levels as a multigrid sequence yields an ef-

ficient solution process [Brandt, 1979]. One problem with this approach is

that the composite grids need to be constructed prior to beginning the solu-

tion process. Since these grids remain fixed throughout the solution process,

a-priori knowledge of the problem and solution is required to adequately form

the composite grids.

Adaptive grids are similar to composite grids which use a specified number

of uniform grids. The main difference is that with adaptive grids, an open

4
u

ended sequence of uniform grids is employed in order to find the solution. This

allows for the addition of finer grids (or subgrids) as needed. The subgrids are

again constructed as a sequence of uniform grids (much like that used with

multigrid). The finer grids are used in those portions of the domain requiring

additional refinement. These regions are identified by comparing the local

truncation errors (as estimated by the program) to some desired convergence

criteria. Using the adaptive grid levels as a multigrid sequence, provides an

efficient solution process with relaxation taking place only on uniform grids

and local uniform subgrids. Since the FAS scheme combines the full solution

(and not just a correction term) on all grid levels and provides a good estimate

of the truncation error, it is especially well suited for use with adaptive grids,

resulting in a "nearly optimal discretization scheme" [Brandt, 1973, 1977,

1979, 1982].

A multigrid method with adaptive grids applied to a one-dimensional

problem is presented in Brandt, 1973. Adaptive multigrid algorithms com-

bine the advantages of both methods. The only apparent disadvantage is the

more complex programming involved in incorporating adaptive grids into the

multigrid technique.

The multigrid process is useful for solving time-dependent problems. An

easily implemented transient method is given in the paper by H. Lee and R.

Meyers, 19S0. In their paper, a multigrid scheme similar to the FAS method

8

l

(presented in Brandt, 1977) is extended to include transient partial differential

equations. With this scheme, the spatial terms are discretized onto a series

of coarser and coarser uniform grids, while tile transient terms are discretized

using backward finite difference and a fixed time increment. The mnltigrid

method is then used to solve tile problem (at each time step) one time step at

a time.

A similar approach (using a fixed time step) for composite grids is pre-

sented by Heroux and Thomas, 1989. An extension of this method is to use

local time stepping. The local time refinements are added in those subregions

covered by fine grids. If the coarse grid time step is At, then the fine grid

time step may be defined as At/i,_e = At/j, where j is a positive integer de-

noting the number of fine grid time steps that the coarse grid time increment

is broken up into [Heroux and Thomas, 1989].

A one-dimensional adaptive grid method using local time stepping is given

by Hedstrom and Rodrique, 1982. The algorithm presented is recursive and

thus may have several levels of refinement in the time domain. In addition,

at any time level there n-my be many fine grids. An important advantage

of using local time refinements with the adaptive grid method is that the

resulting algorithm can simultaneously track a number of wave fronts.

The multigrid method is used in solving the convection-diffusion equation

with strong convective effects by G. F. Carey and Pandanami, 1989. For these

n i

w

problems, the cell Peclet (or Reynolds) number restricts the size of the node

spacing on the coarse grids. If this condition is violated more than once, tile

m_dtigrid method fails. Also, if the mesh is too coarse, Jacobi and Gauss-Seidel

relaxation methods will diverge. The usual way to get around these problems

is to use an upwinding scheme or to add artificial dissipation. Additionally,

two alternative approaches to overcome these problems, a fine to coarse grid

condensation and a local elliptic projection method, are presented by Carey

and A. Pandanami, 19S9.

W

10

w

n

Chapter 3

Theory

The FAS multigrid technique is presented in the first part of this chapter.

A finite difference formulation of a linear problem on a uniformly spaced grid

is considered in order to show how an iterative solver may benefit from the

use of coarser grids approximating the same problem. With this in mind,

the convergence rate is introduced and used along with local mode analysis

to examine the effects of the solver and various grids on the errors in the

approximated solution. Next, the criteria for switching from one grid level

to another is discussed, followed by the interpolations used when transferring

information between levels. The coarse to fine grid correction and a fine to

coarse grid correction are presented along with a summary and flowchart of

the multigrid method.

Then, the adaptive grid method is introduced. Like the multigrid scheme,

the adaptive grid algorithm uses several grid levels to solve a problem. This

method solves the problem over the entire domain on a coarse grid with the

finer grids being confined to those portions of the domain which have not

satisfactorily converged on the coarser grids. The convergence criteria, which

is compared to the truncation error, is then discussed along with the method

used to estimate the truncation error. This is followed by a presentation on the

11

use of truncation error to identify the portions of the domain requiring further

refinement, and the construction of the adaptive subgrids. Also included is a

flowchart of the adaptive grid method.

The final portion of this chapter discusses the application of the algo-

rithms to transient problems. The discretization of the time domain is ad-

dressed, followed by a description of how the solution for the new time step is

estimated.

3.1 FAS Multigrid Method

Suppose we have a problem of the form

LU(x) = F(x), (3.1.1)

where L is a linear differential operator, U(x) is the true solution, and F(x) is

the forcing function or right hand side. Discretizing the problem using finite

differences on a uniformly spaced grid G h gives

Lhu h = F h, (3.1.2)

where U h is the discrete approximation of the true solution and h is the

uniform spacing between the nodes. Boundary conditions are also discretized

and included into the finite difference equations. Equation (3.1.2) is a set of

simultaneous algebraic equations and can be solved by use of an iterative or

direct solution method. Direct solution methods are not usually used because

they are generally more complex and slower than other methods, such as

12

B

m

iterative schemes. An estimate of the solution is required in order for an

iterative method to work. How fast the iterative method converges is partially

dependant upon the accuracy of the estimate provided. The better the initial

estimate is, the faster the method converges. A good initial approximation

may be obtained by solving the same problem using a coarser grid in which the

nodal spacing (Ax) is larger. This results in a set of simultaneous algebraic

equations

Lnu H = F H on grid G H (3.1.3)

which is smaller than the previous set. The superscript H denotes a coarser

grid (larger grid spacing but a smaller number of unknowns) than that denoted

by h. Usually the spacing between nodes on the coarser grid is twice that of

the next finer grid. As before, this problem can be solved using an iterative

solver. An initial estimate of the solution is again required. For the problem

on G H a still coarser grid can be utilized in a similar manner, and so forth

[Brandt, 1977]. Therefore, the coarser grids are used as a means of providing

a better estimate of the solution to the liner grids in order to speed up the

convergence.

The convergence rate _, is the rate at which the errors in the state variable

are reduced per iteration. Defining the estimate to the true solution on G h as

u h, the errors before (g) and after (v) an iteration can be written as

g = U h _ gh and v = U h -u h.

13

(3.1.4a, b)

The convergence rate may be expressed as

w

=

I1]1 (3.1.5)

and considered to be the factor by which the errors are reduced per iteration

sweep. After a few iterations the convergence rate approaches # = 1 - O(h2),

which is a very slow rate. So, to reduce the errors an order of magnitude,

O(h -2) relaxation sweeps must be made [Brandt, 1977]. This difficulty in

reducing the low frequency errors is why many iterative solvers are often slow

to converge.

To illustrate this effect, the Gauss-Seidel method was used to solve the

following problem containing both high and low frequency (short and long

wavelength) terms using a grid consisting of 129 nodes.

26rr "_2
d2Udx2 = -Tr 2 sin(rrx) - (--_-,] sin(26rrx), (0 _< x _< I), u ----u(x) (3.1.6)

with the boundary conditions u(0) = u(1) = 0.

The analytical solution to (3.1.6) is

u(x) = sin(Trx) + 0.1 sin(267rx) . (3.1.7)

As is shown in Figure 3.1.1, the high frequency terms are quickly resolved

(within about 10 iterations) while the low frequency terms take a very long

time (22,541 iterations) to converge.

14

i

0

......... i i i i i _'"' ,.;
P

r _ _' i _ _"

L _..." _'_ _." .'[.,.., ,,J

p

t,
........ I I I I ! ,_

,- ,- c_ c_ _ _ c_ ,

15

w

From this viewpoint, the goal of the multigrid technique is to reduce the

lower frequency errors on the coarser grids while reducing the higher frequency

errors on the finer grids. The convergence rate of the higher frequency error

terms can be found by expanding the error into its Fourier components.

The error terms v contain only those errors that are visible on the current

grid. Those error components whose frequencies are too high to be resolved

on the grid being used appear as low frequency errors. In Figure 3.1.2, a high

frequency curve is presented with the grid nodes identified. As the grid is too

coarse (the nodes are too far apart) to show the true shape of the curve, the

actual curve as viewed from the grid appears to be of a lower frequency than

what it actually is. This effect is referred to as aliasing.

The smoothing factor _ is the worst rate of convergence for the high

frequency errors visible on the current grid level [Brandt, 1982; Jesperson,

1984]. The smoothing factor is given by

max h k

g= /Srr_<t__<Tr #(t_), where t5- hk_l , (3.1.8)

and #(_)) is the spectral convergence rate [Brandt, 1977]. The superscript k

refers to a fine grid, while tile subscript k - 1 denotes the next coarser grid

level. The relation/5 is the "mesh size ratio" and usually is about 2:1 . The 2:1

ratio should always be used, as it is nearly optimal and is the most convenient

and economical ratio for use in the interpolation process [Brandt, 1977]. The

smoothing factor can be found by l__g local mode analysis on the Fourier

16

u

Illlllll _ IlllliJ _ Ill

I I

alqe!aeA plaid

17

w

components of the error. From the smoothing factor "one can explicitly cal-

culate the smoothing rate l log_i -1 for any given difference equation with any

given relaxation scheme" [Brandt, 1977]. The smoothing rate is the number

of relaxation sweeps needed to reduce tile high frequency errors an order of

magnitude. For relaxation methods, the smoothing of high frequency terms

can be very reasonable. For example, a Gauss-Seidel sweep over Poisson's

equation gives the smoothing factor _- = 0.45 and thus, a smoothing rate of

2.86 . This implies that the high frequency errors are reduced by an order of

magnitude after about 3 iterations.

In general, when further relaxations at the current level lose their effec-

tiveness, execution of a multigrid algorithm transfers to another (either finer

or coarser) level of discretization. A set of criteria is needed to detect when to

change over to another grid and to determine whether that grid needs to be

a finer or a coarser one. This criteria is partially based on residuals which is

a measure of the errors present in the estimate of the solution. By rewriting

(3.1.4b) as

U h = u h + v h , (3.1.9)

and then introducing (3.1.9) into (3.1.2) and rearranging terms gives the

"residual equation,"

r h -- F h - Lhu h = Lhv h . (3.1.10)

The residual function r h is a vector containing several values. It would be

18

much easier to work with a single scalar value, which is a measure of the

residuals. This is achieved by taking the norm of the residual function,

ek = ll,.klt, (3.1.11)

where k is an integer value denoting the current discretization level.

To check for convergence at the current level, the measure of the residuals

e k is compared to a tolerance ek. The tolerance ek is designed such that e k < ek

signals convergence [Brandt, 1979]. When e k < ek, the problem has converged

at the current level and a switch to the next finer grid is made. If the current

level happens to be the finest level, then the multigrid procedure is halted as

the desired solution has been found.

If the tolerance criteria is not met, the decision to either go to a coarser

level or remain at the current one needs to be made. If the convergence rate

on the current grid level is slow (high frequency errors visible on this level have

been smoothed), a switch to the next coarsest grid is made. The slowing of

the convergence rate is detected by comparing the reduction in the residuals

to a "stopping factor" 7/as shown in the equation below:

_e> 'l , (3.1.12)
e

where K is the norm of the residual at the previous iteration. As long as (3.1.12)

is not satisfied, further efficient error reduction is achieved by additional relax-

ation sweeps at the current discretization level. When the inequality is met,

19

=

w

relaxations on the next coarser grid become more effective and the algorithm

switches to the coarser grid. An appropriate value for 7/may be taken as an es-

timate of the smoothing factor # or found by trial and error. Good relaxation

methods have a smoothing factor of about 0.5 [Brandt, 1979]. Increasing the

value of 7/delays the transfer of execution to a coarser grid in favor of continued

relaxations on the current level. "Ge_l_erally the overall multi-grid convergence

rate is not very sensitive to increasing q" [Brandt, 1977].

A point to remember is that on the coarsest grid, the problem is solved

to the given tolerance e even though the convergence rate may slow down,

and thus, require several (less efficient) relaxations at this level. This extra

computational work is inexpensive as the coarsest grid contains relatively few

unknowns, especially when compared to the finest grid. The use of a direct

solver (which solves the problem to the level of truncation error) may be used

in place of the relaxation method for the coarsest level to eliminate unwanted

relaxation sweeps.

In changing levels, information about the solution must be transferred to

another grid. This is done by some type of interpolation process which depends

upon whether the destination is a coarser or finer grid. The interpolation

rk+l where the subscript denotes theprocess is designated by the operator "k ,

current grid level and the superscript denotes the grid level onto which the

interpolation is being made. Interpolating from a coarse grid to a fine grid

2O

b
w

is referred to as prolongation; while interpolation from a fine grid to a coarse

grid is called restriction.

When interpolating to a finer grid, the order of the interpolations must

be at least equal to the order of the differential equations (r'n) being solved

[Brandt, 1977, 1979, 1982]. Using lower order interpolations may result in

the creation of significant high frequency errors which will require additional

relaxations. Although higher order interpolations can be used, they are no

more effective than the minimal order except for a few special cases [Brandt,

1977]. Thus, minimal order interpolations should generally be used, as they

are less complex and just as effective as higher order interpolations. One

exception to this rule is when a grid is visited for the very first time. In this

case, the interpolation order should be at least rh + p, where p is the order of

the approximation scheme [Brandt, 1979]. This higher order interpolation is

denoted by rrk+l For a second order differential equation discretized with a

second order approximation, the appropriate polynomial interpretations (I_ +1

and k+_Zrk) are linear and cubic.

For the purpose of describing the interpolation processes, it is assumed

that the information being tra,asferred between grids is the estimate of the

solution.

The linear interpolation process (I_ +1) is depicted in Figure 3.1.3 . The

process is a two-part procedure where the estimate of the solution (or what-

2I

m

ever is being transferred) on the coarse grid nodes is first copied onto the

corresponding fine grid nodes. Then, for the fine grid nodes without a corre-

sponding coarse grid node, the solution from the two nearest coarse grid nodes

is averaged.

The cubic interpolation process (Ir_+1) is shown in Figure 3.1.4 . As be-

fore, the interpolation is a two-part process where the estimate of the solution

is first copied frorn the coarse grid nodes to the corresponding fine grid nodes.

For those fine grid nodes without a corresponding coarse grid node, a weighted

average is obtained from the four nearest coarse grid nodes.

The process of interpolating to a coarser grid (restriction) is denoted by

the operator I_+ 1 . The restriction process is accomplished by either direct

injection or a weighted scheme.

In order to use direct injection, the nodes on G H must be a subset of G h,

which is usually the case. With direct injection, the values on fine grid nodes

corresponding to coarse grid nodes are simply copied onto the coarse grid as

depicted in Figure 3.1.5 . Direct injection is well suited for use with problems

containing very steep gradients. Even though direct injection is both fast and

easily implemented, it does not transfer all of the available information present

on the fine grid.

The full weighting scheme, though, does use information present on all

fine grid nodes and so, preserves some of the high frequency content of the

22

w

L

fine grid
mm • • I A

coarse grid

Figure 3.1.3: Linear Interpolation

fine grid

Figure 3.1.4: Cubic Interpolation

coarse grid

23

• mm •

m _ w
fine grid

coarse grid

Figure 3.1.5: Direct Injection

A B C

¼(A+B+C)

fine grid

/
coarse grid

Figure 3.1.6: Weighted Average (full weighting)

F

u 24

w

L
m

finer grid. It does this by employing a weighted average as shown in Figure

3.1.6 to transfer fine grid information onto a coarser grid.

When transferring to a finer level which has already been visited, a "coarse

grid correction" step is performed. The correction is designed so as to include

the most recent low frequency information in the solution from a coarse grid

onto the next fines" level,

Tk , k--1 Tk--1 k_ (3.1.13)ttk ----Uk q- lk--ll, U --Jk u).

In transferring to a coarser grid, it is desired to approximate the current

fine grid solution on the coarse grid. This is done by calculating a static

residual on the fine grid and interpolating it down to the next coarser gird

where it is added to the existing coarse grid forcing function to give

fk = Lku k _ ik+l u). (3.1.14)

Such a modification allows for the solution to the coarse grid equations to

coincide with the fine grid solution [Brandt, 1979].

A flowchart of a multigrid method, the Full Approximation Scheme (FAS)

is shown in Figure 3.1.7 . First, the problem (already discretized onto a

sequence of grids) on the coarsest grid is solved by the use of either an iterative

or a direct solver. Second, the solution is interpolated to the next finer level

using a higher order (cubic) interpolation. Thirdl residuals (e k) are computed

as a relaxation (Gauss-Seldel) sweep is performed at the current level. The

residuals are then used to determine if the solution has converged.

25

m

w

• u

START)

Solve problem on coaxsest grid

Llu I = F l

/=2

Cubic interpolation of solution,,t = E_lul_ l , f = F t

[F

Relaxation (Gauss-Seidel) sweep and calculation of residuals

L_uk =/L, _L__tl residuals II

check for convergence of solution

ek < _k ?

YES

F NO

check convergence rate

ek/_ _ < rl ?

k=k-l_ NO

fine to coarse grid correction

/t = Lt(I_+,u L÷I) - I_+,(ft+' - Lt+'uL+j)

rL = IIF*- f' II, eL =a*e L

I=1+1

go to finer grid orstop [

I

Jk=l=m?

NO

YES

q p

I finest level yetvisited _YIk=t?

NO

_ k=k+l

I]
YES

t _1 __ otrl-1]

coarse to fine grid correctioca

.f" k..._

Figure 3.1.7: Multigrid Flowchart

26

u

If convergence is detected (e k < ek), the multigrid algorithm proceeds to

the next finer level or it is terminated if the current level is the finest. If this

finer level has been visited before, the coarse grid correction step previously

described is performed to corrcct the fine grid solution.

If the solution has yet to converge, the convergence rate (ek/-d k) is checked.

If this rate is satisfactory (larger than 71), then an additional relaxation sweep

at the current level is done by returning to the third step. If the convergence

rate is too slow, the solution is interpolated (restricted) down to the next

coarser level where a fine to coarse grid correction is performed on the coarse

grid forcing function. After the correction is made, execution returns to the

third step to begin the relaxation loop for the coarser grid.

The parameters o_, 6, and 7] (included in the multigrid flowchart, Figure

3.1.7) are referred to as "switching parameters" and assist in guiding the flow

of the algorithm. These parameters range in value from 0 to 1 . The stopping

factor 9 was discussed earlier in this chapter.

The parameter 6 governs the convergence criteria on coarser grids. After

interpolating to a coarser grid, the most recent residual error norm (from the

finer level) ek+l is reduced by a factor of _ to obtain the convergence criteria

e for the current grid level, thus

ek = 6ek+l. (3.1.15)

The parameter 6 is designed such that the errors present on the current grid

27

m

B

!

w

are reduced by a factor similar to the reduction achieved on the finer grid per

each multigrid cycle. A multigrid cycle consists of the processes involved in

performing a few relaxation sweeps on the finest grid, then proceeding down

to the coarsest level and returning back to the finest grid level. Since # is a

measure of the convergence rate (per relaxation sweep) of the high frequency

errors, it can be used to find 6; hence,

6 = #", (3.1.16)

where r is the number of relaxation sweeps on the finer level per multigrid

cycle. "With good relaxation schemes # ._ 0.5 and r _ 3," thus setting

6 = 0.125 is usually a good idea [Brandt, 1979]. Like r/, 6 may be found by

trial and error, and variations in 6 have little effect on multigrid efFaciency

[Brandt, 1977].

The parameter o_ is used to determine the convergence criteria e for the

finest level visited. "Oi1 the currently finest level (k = l) we need convergence

to within the estimated size of tile truncation error" [Brandt, 1977]. If grid

level l has already been visited, the current estimate of the truncation error

is r t-l, but an estimate corresponding to level l is desired for use as the

convergence criterion. Therefore, the convergence criteria on grid level l may

be taken as

e I = aT I-1, (3.1.17)

where the parameter c_ is a scaling factor relating the truncation error from the

28

coarser grid to that on the finer grid. Since the truncation error is dependant

upon the nodal spacing (H, h) and the approximation order (p),

= (3.1.18)

Assuming that the nodal spacing on the coarse grid is twice that of the next

finer grid (which is usually the case), (3.1.18) may be rewritten as

= 2-P. (3.1.19)

Returning to (3.1.17), if r

new equation is

1-2 is not known, "r1-2 is used to determine eI. The

e I = a27 "/-2 (3.1.20)

and is used when grid level l is visited for the first time [Brandt, 1977].

3.2 Adaptive Grid Method

Adaptive grid schemes are similar to nmltigrid methods. Like multigrid

methods, adaptive grid algorithms use a sequence of finer and finer uniform

grids to solve a problem. But with adaptive grid schemes, each finer grid

may be confined to increasingly smaller subdomains which require additional

refinement. The purpose of adaptive grid methods is to minimize the compu-

tational work by identifying regions of the domain which have converged to

some desired accuracy so that further computations are confined only to those

subregions which have yet to converge and, thus, require additional

29

w

T

i

refinement. Such regions often occur in problems with steep gradients, such

as transonic flows, fronts, shocks, etc. [Hedstrom and Rodrique, 1982].

Here, the work is restricted to one-dimensional problems. This allows

the Gauss-Seidel relaxation step to be replaced with a line (direct) solver.

This eliminates the need to return to the coarser grids since the direct solver

solves the problem to the level of truncation error on the associated grid. In

order to make full use of the coarser grids, the following adaptive scheme is

introduced. With this scherne the finer grids may be confined to increasingly

smaller subdomains. The adaptive grid procedure is outlined in Figure 3.2.1,

and proceeds by first solving the discretized problem on a coarse grid using

a direct solver. Second, the solution is interpolated to the next finer grid

level. The problem is now solved (again using a direct solver) on the current

level over all existing subdomains or over the entire domain, as the case may

be. The relative truncation errors are now found and used to construct the

adaptive subgrids so that they contain the portions of the domain which have

not converged to the desired accuracy e. Several subgrids may be needed as

those portions of the domain which have not converged may lie separated from

each other. For such situations, each separate subdomain requiring refinement

is allocated to a different subgrid. In order to do this, effective boundary

conditions must be specified for each subgrid to ensure tile continuation of the

solution as each subdomain is treated as a separate problem. The problem is

3O

\

m

check for exlstance

of subdomains

nsubregs(k) > 0 ?

yes

START

solve: I.I u! = 1:1

k,2

nsubregs(2) -- 1

uk = 11"_.1uk-I

no

solveover each subdomain ILkuk=Fk

IfindrelativetruncationerrorTk-I .k..k-I k. .k-I..k k.
k :L_.l k U)- Ik {LU)

search for and flagunconverged

nodes where: _ik'IAXk_l > 0

----_ k -"k+l

Idefinesubdomains using flagged nodes insubregs(k+I)- number of subregions formedJ

Ik:m.
k:m

Figure 3.2.1: Adaptive Grld FLowchart

31

u

now solved with the direct solver on the next finer grid only over those portions

of the subdomain covered by subgrids. At this point, the algorithm returns

to the interpolation step and then proceeds to check for the existence of any

subgrids on this finer grid level. As the criterion for convergence e is also

used to define the subdomains, the existence of any subgrids requiring further

refinement indicates that the solution has yet to converge over the entire do-

main. So, if no new subgrids are defined, the solution has converged to the

accuracy sought on all nodes. Convergence is detected when Az__lri k-1 < e.

By multiplying the local truncation error by AXk_l, the error is weighted with

respect to the grid level k - 1. Weighting the truncation error in this fashion

results in an error measurement comparable to that obtained on any other

level. With this algorithm, the final solution is presented as it exists on the

finest level. If the solution converges over the entire domain on one of the

coarser grids, it is then simply interpolated up to the finest grid for output.

A point to note is that since this algorithm is recursive, a subgrid may

itself contain several subgrids on finer levels which, in turn, may contain still

more subgrids on even finer levels of discretization.

One approach to the construction of the subgrids is to use a measure of

the truncation error to identify subregions requiring refinement. The actual

truncation error is not known, but it can be approximated by the relative

32

m

m

(local) truncation error rh/-/ which is found by evaluating (3.2.1) .

(3.2.1)

The relative truncation error is the truncation error on a coarse grid (G H)

relative to that on a finer grid (G h) and approximates the true truncation

error on the coarse grid. It may also be viewed as "the error which arises

when the fine grid solution is substituted in the coarse grid equation" [Brandt,

1979]. In order to find r/Cr, two grid levels are required along with the solution

H is obtained, it is multiplied by theon the finer of the two grids. Once r h

weighting function _z/y, and then compared to the desired accuracy in order

to identify those regions of the domain (nodes) on the coarser grid for which

the differential approximation has not converged. So, to obtain the adaptive

subgrids on the next finer level k+l, the solution from the current level k is

used in (3.2.1) to estimate the local truncation error on grid level k-1. This

estimate of the truncation error is now compared to the desired accuracy e to

identify (flag) those nodes (on level k-l) requiring further refinement. These

flagged nodes are then grouped together to form subgrids. Since these subgrids

define subdonaains which are then _:eated as separate problems, appropriate

boundary conditions need to be specified for each subgrid. This is done by

extending the subgrid (on level k-I) to include nodes for which the differential

approximation has converged. The resulting subgrids are now defined on the

next grid level by identifying the --.odes (on level k+l) corresponding to the

33

subgrid boundaries on level k-2. To provide an estimate of the higher order

derivatives (such as flux) across subdomain boundaries, the subgrids may be

extended to include more than just a single converged node (see Figure 3.2.2).

The subgrids are constructed with the idea of avoiding any unnecessary or

duplicate computational work so as to increase the efiqciency of the algorithm.

In constructing adaptive grids for one-dimensional problems, the process of

flagging and grouping unconverged nodes is combined with that of defining the

subgrid boundaries. This procedure begins by sequentially scanning the nodes

in each subgrid on the previous level (k-l) looking for nodes on which the

solution has yet to converge to the desired accuracy. The relative truncation

error and e are used to determine whether or not the solution has converged

on node i. Once an unconverged node is found (using (3.2.2)), it is used to

locate the boundary node where the first (or next) subgrid begins:

I_Xk_lrlk-a I > _. (3.2.2)

As the nodes are scanned sequentially, this subgrid boundary node is taken as

the previous node (which has converged to the desired accuracy). At this point

the corresponding node on grid level k+l is identified as the boundary node

at which the subgrid begins. This is accomplished by storing the location of

the node (by node number) into an array (IADAPT) containing pointers used

to define the subgrid boundaries. The scanning process continues (on level

k-I) by searching for the next node on which the solution has converged.

34

÷
r_

I

0

0

0

c_

°_

0

0

.P

4

\ J
J

r_

e_n_

omt

c_

c_

T_

eml

35

m

w

L

m

w

m

As before, the relative truncation error and the desired accuracy e are used

to make this determination. But since the search is for nodes on which the

solution has converged, Equation (3.2.3) is used instead of (3.2.2)

I< (3.2.3)

The first node found on which the solution has converged becomes the bound-

ary at which the subgrid ends. As before, the corresponding subgrid boundary

node on level/,'+1 is identified and its location is stored in the array IADAPT.

The algorithm now returns to scan the remaining nodes, looking to construct

another subgrid where refinement is necessary. The process continues until

all the nodes contained within the subgrids on level k-1 are searched. The

subgrids are now complete and have been identified on the next finer grid

level; with the exception of the boundary nodes, the subgrids contain only

unconverged nodcs. As the solution on the subgrid boundaries has converged

to the desired accuracy, the problem within each subgrid may now be solved

(using Dirichlet conditions) without further modifications.

3.3 Transient Algorithlns

Transient problems are solved using an implicit finite difference discretiza-

tion scheme in both the multigrid and adaptive grid algorithms presented. The

spatial terms of the partial differential equations are discretized onto uniform

grids using a central finite cliffercnce approximation while the time domain is

discretized with a backward finite difference. As usual, the unknown terms are

36

placed on tile left hand side of the equation and the known terms are placed

on the right hand side. This leads to an algebraic system of equations of the

form

LJu j = F j-l, (3.3.1)

where j and j - 1 are integer values denoting the time steps of interest. The

operator L now includes terms containing the time increment At. The term

U represents the discrete solution at the current time step and F contains

the discretized forcing function (if it exists) along with the solution from the

previous time step.

In handling transient problems, local time stepping is not used here; in-

stead, a fixed time increment is employed throughout the solution process.

Each time step is treated as an individual problem and is solved separately

using the previously described multigrid or adaptive grid methods. In transfer-

ring from one time step to the next, the solution from the finest grid (current

time step) is coarsened (restricted) and used as the initial estimate for the

problem on the coarsest grid at the next time step:

l/J+ 1 rcoarsest _ j
coarsest = * finest _*finest' (3.3.2)

where j denotes the current time step (just solved) and j + 1 denotes the

rcoarsest is simply a fine to coarse restrictionnext time step. The operator -fi,_est

operator which is applied the nmnber of times required to restrict the finest

37

grid solution down to the levelof the coarsest grid.

3.4 Nonlinear Adaptive Grid Algorithm

The adaptive grid algorithm is also used to solve nonlinear problems.

Discretizing a nonlinear problem results in a set of simultaneous algebraic

equations containing coefficients dependant upon the solution. To handle the

nonlinearities, Picard iterations are applied to the tridiagonal solver.

The solution to nonlinear problems may contain fronts with very steep

gradients. Solving such a problem using the adaptive grid method requires

that an estimate of the solution be transferred from a coarse grid to a fine

grid. In transferring the solution to a finer grid level, it is desired to minimize

the introduction of large errors. Due to the nature of nonlinear problems,

such errors can result in nmnel'ical instabilities. To limit the creation of these

errors, the adaptive grid algorithm uses only linear interpolations. Using a

cubic (or higher order) interpolation to transfer the approximation of the

solution to a finer grid can result in the introduction of relatively large errors

near fronts with steep gradients. These errors are created as the interpolated

approximation (on the fine grid) will tend to overshoot the actual solution

near fronts. The use of a linear interpolation can avert this potential problem,

but it will create some high frequency errors (see Figures 3.4.1 and 3.4.2).

The high frequency errors can easily be smoothed out on the fine grid at the

expense of some additional computational work.

38

w

_=

m

2

h_

¢¢

1.0

0.0

. Cubic approximation

i | | i | i i | | i i , & &

10

fine grid node

Figure 3.4.1: Cubic Interpolation at a Front

2O

1.0

_ 0.0

_j Linear approximation

' • ' i i , i _ , l i | ! i i i i i i

10

fine grid node

2O

Figure 3.4.2: Linear Interpolation at a Front

39

=

To solve nonlinear problems with the adaptive grid method, Picard iter-

ations are used in conjunction with a direct solver. The adaptive grid process

may require the use of several subgrids, with each subgrid encompassing a

different portion of the domain. Each subdomain is treated as a separate

problem. The solution on each subgrid is found by using Picard iterations

along with the tridiagonal method. The direct solver is iterated until the ap-

proximation converges on the sohMon. This procedure begins by using the

most recent approximation of the solution to estimate the value of the nonlin-

ear coefficients. The coefficients are held constant and the direct linear solver

is used to obtain a better estimate of the solution. A residual norm ek is now

computed (over the current subdomain) using

(3.4.1)

The nonlinear coefficients are updated and the process is repeated until the

residual norm becomes approximately constant from one iteration to the next,

signalling that the approximation has converged. Convergence is defined by

e k. _ -gk < toIer, (3.4.2)

where gk is the residual norm as it existed prior to the relaxation sweep and

toler is a user defined tolerance used to detect convergence. When (3.4.2) is

satisfied, program execution proceeds on to either the next subdomain or the

next grid level. The resulting algorithm is presented in Figure 3.4.3 .

4O

c

w

0 Y,,--
v,_ •

o

-- u
o w

4m
II

i.+l

ID

I+'I

i+., ++O _c o E

e-i

;I *°/_L'/ _,0 +,
L 7-

21_.
f. _,.

--..J _

-- ('4 1_1

,i I

i

c

T

ii I

c

c _

%1

p
_ e.
_ O

p _ tn

.) o

_w

41

ii

o

o

!

__ ,, I

e_
-- m

-=[I
I
I

.J

-Ii

0

N

Dm

.<
L,

0

2:

L.

w

Chapter 4

Test Problems

Several test problems are used to verify the multigrid and adaptive grid

algorithms implemented into computer programs. The test problems are also

used to highlight some of tllc? main features of each program. Each of the

problems are discretized using a central finite difference approximation for

the spatial terms. In addition, [he time-dependent problems use a backward

finite difference approximation for the transient terms. For the approximations

used to solve the steady-state problems, the truncation errors are on the order

of Ax 2 (also denoted as O(Az2)). The transient test problems are discretized

using a finite difference approximation with O(Ax 2, At).

4.1 Test Problem 7_1

The first test problem was used to verify the initial multigrid program

written. This program was first implemented on a personal computer (Apple

IIc) and later rewritten for use on a lAX machine. Test problem (4.1.1) is

designed to show that the nmltigrid algorithm quickly solves a problem which

may take a very large nmnber of iterations to solve on a fine grid using an

iterative relaxation method. The problem is

d2tt

dx 2 -f(x) (0 < x < 1), (4.1.1a)

42

subject to the boundary conditions:

u(O) = 0 and u(1) = 0 . (4.1.1/))

The forcing function f(z) first used with (4.1.1) is

f(a') = -rr 2 sin(_'z) . (4.1.2)

Equation (4.1.1) with its forcing fimction given by (4.1.2) is referred to as test

problem #la. Discretizing (4.1.1) using (4.1.2) onto a grid containing n nodes

yields:

1

Ax 2 (ui-1 - 2ui + Ui+l) = -rr 2sin(rriAx) (1 < i < n), (4.1.3a)

and (for the boundary conditions)

ul =0 and u.=0. (4.1.3b)

The analytical solution to (4.1.1) with (4.1.2) is

,,(,_.)= _i,_(_x). (4.1.4)

A different forcing function (4.1.5) containing both high and low frequency

terms is now introduced to illustrate that the effect of low frequency errors is

to slow down the convergence rate of the solution:

.f(.r) = -,r _ .*in(=,.,,)
(26rr) 2

10

43

sin(26rrz) . (4.1.5)

Equation (4.1.1) with the forcing furtction defined by (4.1.5) is referred to as

test problem #lb. Discretizing (4.1.1) using (4.1.5) results in

1 (ui-1 - 2ui + ui+,) = __2 sin(rriAx)
/__Nx2

(26zr) 2

10
sin(26rriAx), (4.1.6a)

where (1 < i < n), and

It 1 = 0 and tin -_ 0 . (4.1.6b)

Tile analytical solution for this case is

u(x) = ,_in(,-r.v) + 0.1 sin(26rrx) . (4.1.7)

4.2 Test Problem _2

The multigrid program was extended to solve transient one-dimensional

partial differential equations (PDEs). A new test problem,

0 2 _ 0It

Oz 2 Ot

subject to the following conditions:

(0_<x_< 1, t_>0), (4.2.1a)

u(O,t) = O, u(1,t) = O, and u(x,O) = sin(,-rx)

was introduced. In addition to the nmltigrid program, the adaptive grid

method is also used to solve this transient problem. Discretizing the prob-

lem using an implicit finite difference scheme for the time domain gives

-Mu{_ 1 + (22"l'I + 1)u_ -- .hru_+,

44

(l<i<n, j >__1), (4.2.2a)

where

At

3I- /kz2 , (4.2.2b)

with the boundary conditions:

u_ = 0 and u3, = 0. (4.2.2c)

The superscripts j anti j - 1 are integers referring to the current and previous

time steps. The initial condition (4.2.1b) is discretized as

0 = sin0riAz).tt i (4.2.2d)

The analytical solution for this problem is

0 = Sin(' x) (4.2.3)

4.3 Test Problem _3

An upwind/downwind Gauss-Seidel relaxation method was introduced

into the multigrid program. The problem solved, Equation (4.3.1), is a one-

dimensional convection-diffusion equation with constant coefficients,

02u 0. O.

n0:r"- - "cg.r cgt (0 < z < 1 t > 0), (4.3.1a)

where v£ >> _: with the size of the domain /.2 = 1.

subject to the conditions

Equation (4.3.1a) is

u(O,t) = O, u(1,t) = 0, and

45

u(z, O) = sinOrz). (4.3.1b)

n

The discretized form of this problem is

-(M + :,,),,{_,+ (2=_I.+ i),,{ - (M - iv),,,+,, j-1 (1 < i < n, j > 1),_Zt i

(4.3.2)

L _

w

where

ic_t u_t

:lI- A:r2, and N- 2Ax" (4.3.3)

As in the previous problem, the boundary and initial conditions are discretized

as

• " 0 = sin(rriAx). (4.3.4)u_ = 0, u_, =0, and ui

The analytical solution to this problem is

,,(x,O = 4_,=_°x Z "_ (
m=l L_,,,2,,, --1)me -a -- 1 e -x_t sin(mrrx),

(4.3.5)

where

fl,n = 32 q- (m -- 1)271.2 , (4.3.6)

w

3% = c[2 + (m + 1)2_r 2, (4.3.7)

(2mkrr)2 + _,2
A,,, = , (4.3.8)

4_

a - (4.3.9)
2a:

Test problem #3 is one that can possess rather steep gradients in the field

variable and may require a fine mesh to properly resolve the steep gradients

present. In addition, an adaptive grid program employing a direct solver was

also used to solve the problem.

46

4.4 Test Problem _:4

The next test problem is the nonlinear viscous Burgers' equation (4.1.1)

which is soh'ed using adaptive grids,

cg_u c% Ou

u_ u02.- 0---t- (0_<x_<l, t>_0), (4.4.1)

subject to the conditions:

u(0, t)=l, u(1,t) =0, and u(x,0) =0. (4.4.2)

Discretizing (4.4.1]yields:

• -- - i)ui+l i-I (l<i<n, j>l),= It i

(4.4.3a)

where

,At NN At u (4.4.3a, b)
:_I- Ax 2, - 2-_x "

The nonlinearity causes a problem because the coefficient N_ in (4.4.3a) is

not known since it depends upon the solution sought (u!). To get around this

problem, the most recent approximation of the solution _ available (from the

i in (4.4.4).previous grid level or iteration) is used instead of u i

i\,1 At K{ (4.4.4)- 2-Sx

Having approximated Arj, the discretized set of equations may now be solved.

The new solution can then be used to find a better approximation for the

47

w

coefficient N j, which in turn can be used to compute a more accurate esti-

mate of the solution and so on - until the solution ceases to change by some

predefined amount. Thus, this discretization scheme leads to an iterative so-

lution method. Usually, only a few iterations are required for the solution to

converge for each time stcp.

Summarizing, we have

-(M + N[)ui_ 1 + (2M + 1)u_- (.,_I - Nl)u{+ 1 = u{ -1

where

(l<i<n, j_> 1),

(4.4.5)

3I -- _,At At i7! (4.4.5a, b)

with

u_= 1, uJ,,=0, and u °=0. (4.4.6)

For comparative purposes, this problem is also solved using a tridiagonal

solver which incorporates Picard iterations. To obtain an equitable compari-

son between the adaptive grid and tridiagonal methods, both algorithms are

used to obtain solutions of similar accuracy. This is done by first solving the

problem using the adaptive grid algorithm, and then computing a residual

norm eaa (on the finest grid level) using

<,c, = lIF- L II, (4.4.7)

where the subscript AG refers to the adaptive grid scheme. As the tridiagonal

48

w

= :

w

-Tff

scheme uses tile same type of residual to detect convergence of the solution,

eAa is used as the convergence criteri_a for the tridiagonal algorithm.

4.5 Test Problem _p5

The fifth test problem is to solve a nonlinear equation modeling one-

dimensional water flow in an unsaturated soil. The equation used is the water

I2_chards equation:content formulation of the "

oo o (zc z(oo
CO--t-+ _ C cOx) = 0, (4.5.1)

o0 0 is tile volumetric water content, K is the hydraulic con-where C - Oh,

ductivity, h is tension, t is tirne, and x is depth measured from the soil surface.

The coefficient C is found from the water retention curve

0 - 0,. = (_ + (ah)_)_,, (4.5.'_)
S_ = O_ - 0,.

where

1

,_ = 1- ,_ (4.5.3)

The hydraulic conductivity is given by

w

_==

w

' ± ,h)2 (4.5.4)t(= a;si(_ - (_ - s:,)

In the above equations, I(_ is the saturated hydraulic conductivity, Or and 0s

are the residual and saturated water contents, and c_, rT_, and fi are model

parameters determined from laboratory data. By differentiating and manipu-

00
lating (4.5.4), a function for _-E in terms of 0 is found

cO0 _ elf,,b(0,-O_)(S[_ - 1)rhs_--_" _ (4.5.5)
cOb

49

p_

m

w

And so, C is now given by

rh
c = - or)(s2 - 1) so o' (4.5.6)

Equation (4.5.1) is solved over a domain of 0 _< x _< 700 cm. and is subject to

the boundary conditions:

w

q(0, t) = 1.82 cm/hr (flux), and 0(700, t) = Oinitial •

The initial condition is given in terms of capillary tension and is

(4.5.7a, b)

hi,,iti,t = -50,000 cm H20 . (4.5.8)

w

The initial water content Oi,,iti, t is computed by introducing the initial tension

into the water retention curve (4.5.2). The entire problem is solved up to a

times of 5, 15, and 35 days. At 35 days, the infiltration front has not reached

z = 700 cm, thus (4.5.7b) is still valid.

The soil used for this numerical model is loamy sand, which is character-

ized by the following parameters:

0,. = 0.0828, 0_ = 0.3209, A'_ = 270.1 cm/day,

d=0.05501, and fi= 1.5093.

The value of I(_ was determined from laboratory data while the remaining

parameters are taken as the average values for the loamy sand found at the

Las Cruces trench site [Hills et al., 1959a,b].

5O

z

This problem is solved using an adaptive grid method similar to that used

to solve the previous problem. The expanse of each of the finer adaptive grids

is determined by comparing the estimate of the local truncation errors to a

predefined accuracy term e. For comparative purposes, the problem is also

solved using the tridiagonal method. In order to obtain a solution of similar

accuracy, the value of the residual norm from the adaptive grid method eaa

is used as the convergence criteria for the tridiagonal scheme. In both cases,

Picard iterations are employed in order to handle the nonlinearities. Each

Picard iteration consists of first, estimating the value of the coefficient C

and the hydraulic conductivity IC using the most recent estimate of 0. The

updated values of C and I(arc then used to compute a better estimate of 0.

This process is repeated until convergence is reached, for each time step.

Discretizing (4.5.1) yields

-- Oi_ 1 q- -t- Di+x 2) 0 iMDi_ _ J (M(Di_ _ + I) j

- MDi+,OiT+t+ _,c(_,i- Ni-1)= O{ -1 ,
(4.5.o)

= =

where

1
D i-½ = :(Di-1 + Di)2-

1

Di+ ½ = _(Di + D,+x) ,

[(_ At
, M-

D i - Ci Ax s

K, = i .sc} - - so);o)' ,

C, d,fi,7,.(O_ O_)(S¢i -_ 1) '_'¢ _

51

.-- ÷

m

and

0i - 0r

S_i- 0_-0r.

The term _i is the most recene appro×imation of the solution on node i for the

current time step. For this prol_h:nl the finite difference nodes are centered in

the grid volumes as shown in Fig_u'e 4.5.1 . To center the nodes in the grid

volumes, the finite difference grids are shifted -_ into the domain. This is

performed on all grid levels so that coarse grid nodes correspond to their fine

grid counterparts. Therefore, the direct injection and interpolation processes

are performed in the same manner as denoted in chapter four. Applying the

flux boundary condition (4.5.7a) to the finite difference equation for node 1

gives

(MD, ½ + I)O{ - AID,[O_ = O{-' - --at (K,
zXz _- (4.5.1o)

Discretizing the other boundary condition (4.5.7b) results in:

0 n -_ Oinitial (4.5.ii)

where the subscript n refers to the final node in the grid.

w

52

t

F_

_D

0

t
N

<]

1

t

0

Z

0
el..i

k
r_

ullnl

e_..q

elm1

k

oJm

gJi

i ii.ii

ru

r..)

53

nm_

w

w

Chapter 5

Results

The test problems presented in the previous chapter are solved using ei-

ther the muhigrid and/ol the adaptive grid methods. The computed solutions

are compared to the anal vtic_fl solution to veri_ the programs. For compar-

ative purposes, the performance of these algorithms are compared to that of

a direct solver (employing the tridiagonal method) and a program using the

Gauss-Seidel method.

The performance of the algorithms is measured by comparing the com-

putational work or CPU time (actual running time of the program) required

to solve a problem. For the Gauss-Seidel method, the computational work

is directly related to the number of iterations needed to solve the problem.

For the multigrid and adaptive grid algorithms, the computational work is

measured in terms of work units (\VU), where one WU is equivalent to a sin-

gle Gauss-Seidel sweep on the finest grid level. This definition of work units

neglects the overhead associated with mapping to different grid levels in both

the multigrid and adaptive grid programs. An alternate measure of a pro-

grams performance is the CPU time required to solve a problem. Measuring

the time needed to solve a problem accounts for all the computations done.

A potential complication is that CPU time is machine dependant. Thus, in

54

_=.

order to compare algorithms by using CPU time, the programs must be run

on the same computer.

5.1 Results for Test Problem _1

Test problem #1 (4.1.1) is solved using the multigrid method, the Gauss-

Seidel algorithm, and a direct solver (tridiagonal method). To compare the

performance of these methods, problem :_la,

L . d-' _L
_ sin(,r) ,

dx 2

and problern #11),

d °-'it
- sin(26)10

are discretized and solved (with the tridiagonal and Gauss-Seidel methods) on

a grid containing 129 nodes. For the nmltigrid method, these test problems

are discretized using 6 grid levels such that the finest grid contains 129 nodes.

With this discretization scheme, there are only 5 nodes on the coarsest grid.

For these problems, the multigrid method is many times faster than Gauss-

Seidel yet somewhat slower than the direct solver (see Tables 5.1.1 and 5.1.2).

The multigrid solution for test problem #la, where f(x) given by (4.1.2),

is plotted along with its analytical solution in Figure 5.1.1 . In solving this

problem, the switching parameters used by the multigrid program are: a =

0.25, 6 = 0.22, and 7? = 0.625 . The multigrid program solves problem #la

in 16.35 work units. In contrast, the Gauss-Seidel algorithm requires 22542

55

Table 5.1.1: Results for Test Problem #la

w

Solution Method Computational Work CPU Time

Multigrid 16.35 WU 0.08 sec

Gauss-Seidel 22542 iterations 48.41 sec

Direct Solver - 0.02 sec

L_

w

Table 5.1.2: Resu|ts for Test Problem :_lb

Solution Method Comlmtational Work CPU Time

Multigrid 18.60 WU 0.07 see

Gauss-Seidel 22541 iterations 49.69 sec

Direct Solver - 0.02 see

L

56

w

R

U

1.3

1.0

0.8

0.6

0.4

0.2

00

-0.2
0.0

......... i f i I

Analytical Solution

• o

,_ I ! 1 I

0.2 0.4 0.6 0.8 l.O

X

Figure 5.1.1: Solution to Problem _la

.m
e_

@

5O

40

3o

2o

lO

#

$

|

@O 4

"!:!!0

O

0 i | i i d i I | I • • a J z _ i

0 I0

number of nodes on the eouGmt grid

T •
!

0 0

•- 4 levels

•- 5 levels

•- 6 levels

0- 7 levels

20

Figure 5.1.2: Effects of Varying the Number of Multigrid Levels

57

.-.._

m

iterations to get tile same solution. So, based on work units tile multigrid

method solves tiffs problem about 1300 times faster than the Gauss-Seidel

algorithm. In making this comparison, one should keep in mind that the def-

inition of 'work units' used neglects the overhead involved with the multigrid

scheme. A better comparison may be obtained by considering the amount of

CPU time required to soh'e the problem. The Gauss-Seidel algorithm took

48.41 seconds of CPU time (CPU seconds) to solve the problem while the

multigrid method needed only 0.0S CPU seconds. That's an approximate in-

crease in speed of 600 times over the Gauss-Seidel scheme. Test problem #la

was solved with a direct solver (tridiagonal method) in 0.02 CPU seconds or

about 4 times faster than the multigrid method.

The multigrid program was also used to solve problem #la several times

while varying the number of grid levels and the number of nodes present on

the finest grids. The resulting data (CPU time and work units needed to get

the solution) is given in Table 5.1.3 . By keeping the nmnber of grid levels

constant and varying the number of nodes on the finest level (by increasing the

number of nodes on the coarsest level) the effects of the discretization on the

coarsest grid is seen in terms of program efficiency. As the number of nodes

on the coarsest grid increases, the number of work units required to solve the

problem also increases (see Figure 5.112)i The main reason for this effect is

that as a finer and finer grid is used on the coarsest grid level, an increasing

58

r

w

of

levels

4

5

6

7

8

4

5

6

4

5

8

9

4

5

6

7

8

9

10

Table 5.1.3: Test Problem _/_la, Results

of nodes

coarsest grid

8

7

7

7

7

7

6

6

6

6

6

6

5

5

5

5

5

of nodes

finest grid

57

113

225

449

897

49

97

193

385

769

41

81

161

321

641

1281

33

65

129

257

513

1025

2049

Work

Units

15.47

21.64

19.25

17.83

17.04

14.41

15.48

21.06

18.73

17.45

13.59

15.45

15.89

21.12

18.64

22.37

14.53

16.36

16.35

17.27

17.14

17.61

21.83

CPU time

seconds

0.04

0.08

0.13

0.24

0.43

0.04

0.06

0.13

0.21

0.37

0.02

0.06

0.08

0.20

0.35

0.80

0.03

0.05

0.08

0.13

0.26

0.50

1.27

0.09

0.16

6 4 97 24.08

7 4 193 25.01

8 4 385 26.52 0.30

9 4 769 26.79 0.59

10 4 1539 26.41 1.16

59

=

w

Table 5.1.3: Test Problem _la, Results, continued

of

levels

10

11

4

5

6

7

of nodes

coarsest grid

3

3

3

65

33

17

of nodes

finest grid

65

129

257

513

1025

2049

129

129

129

129

129

129

2049

Work

Units

17.66

16.86

17.42

17.16

17.58

21.79

352.80

I27.80

43.00

19.76

16.35

16.86

237.40

CPU time

seconds

0.05

0.08

0.13

0.25

0.50

1.29

0.67

0.26

0.12

0.08

0.08

0.08

6 65 6.24

7 33 2049 56.93 2.09

8 17 2049 28.39 1.50

9 9 2049 16.64 0.96

10 5 2049 21.83 1.27
=__

11 3 2049 21.78 1.27

60

w

amount of computational work is required to resolve tile lowest frequency

errors no longer visible on the coarsest grid. Thus, more computational work

is required to resolve these low frequency errors.

The multigrid solution for test problem #lb (in which f(x) is given by

(4.1.5)) is presented along with its analytical solution (4.1.7) in Figure 5.1.3

As with the previous probleln, the multigrid method was used to solve

problem #lb using the same switching parameters (a = 0.25, 8 = 0.22, and

r/ = 0.625). \Vith this set of switching parameters, an insumcient amount

of work is performed on the coarser grids to adequately smooth out the low

frequency errors (see Figure 5.1.4). With this problem, the high frequency

terms of the solution are aliased and appear as low frequency terms on the

coarser grids. So, as the problem is relaxed on the coarse grids, the aliased

terms are smoothed out and consequently a low frequency error is introduced

into the solution.

One way the errors appearing in Figure 5.1.4 may be reduced is by dis-

cretizing the problem (at all levels) onto much finer grids. However, doing

so tends to be contrary to the purpose of the multigrid method because an

acceptable solution is obtained at the expense of computational work. There-

fore, this is not such a good idea clue to the large increase in computational

work needed to get a good solution.

By exploiting the switching parameters 8 and _1 which are built into the

61

h _

u

= ,

U

U

1.2

I

1.0 1

0.8

0.6

0.4

0.2

0.0

-0.2
0.0

1.2

1.0

0.8

0.8

0.4

0.2

0.0

-0.2

......... I 1 I I

alpha = 0.250 /_ A /__/Multigrid Solution

_lta = o_0 A / \/ \/\r/2_

..... *,,,I |],,_, I ll_.

0.2 0.4 0.6 0.8 1.0

X

Figure 5.1.3: Solutlon to Problem _lb,

Using Original Switching Parameters

......... I I I "" I

alpha = 0.250 ,, .Analytical Solution

.,,. : o,oo ,. A/YA
,

...... x:,[......... I 1 1,,*

0.0 0.2 0.4 0.1 0.$

X

Figure 5.1.4: Solution to Problem _lb,

Using Alternate Switching Parameters

:_ 62

1.0

m

m

w

w

multigrid scheme, tile problem is easily remedied. Reducing the value of 5 re-

suits in a more stringent convergence criterion on the coarser grids and thus,

more work is performed on these grids. This serves to better resolve the low

frequency errors present in the solution on the coarse grids, and so, these er-

rors tend to be less of a problem. Increasing 7? leads to more relaxation sweeps

(per multigrid cycle) on each level before transferring program execution to

the next coarser grid. Since more relaxations are performed before changing

grid levels, aliasing errors, as well as any errors introduced by the interpola-

tion routines, benefit fl'om tile additional relaxation sweeps. Setting 6 = 0.1

and _7 = 0.7 (values found by triat and error) eliminates the problem of the

undesired low frequency error (see Figure 5.1.5) while the number of work

units required to get the solution increases slightly. By using this new set

of switching parameters, the more accurate solution shown in Figure 5.1.3 is

obtained.

The performance of the multigrid algorithm is similar to that obtained

for problem #la. Test problem #lb is solved with the n-mltigrid algorithm in

18.6 WU and takes 0.07 CPU seconds. The Gauss-Seidel method takes 22541

iterations and 49.41 CPU seconds to get the same answer while the the direct

solver requires only 0.02 seconds of CPU time. Thus, the multigrid method

is about 1200 times faster than Gauss-Seidel but 3.5 times slower than the

tridiagonal method.

63

w

L_

n

¢¢

t_

om

o Jr

/:
_3

t_

0

_m

2
m

6

._o,x.x_on-LL

64

=
w

__1

5.2 Results for Test Problem ://:2

The next problem solved, test problem #2, is the one-dimensional tran-

sient diffusion equation given by (4.2.1). The problem is discretized onto a

grid with 129 nodes and is soh, ed using the nmltigrid, Gauss-Seidel, tridiagonal

and adaptive grid methods. The problem is solved to within 99% of steady

state, which occurs at about t = 0.50. As with all the transient problems

solved here, time stepping with a fixed increment is employed throughout the

solution process for each algorithnl. Tile time increment used in solving this

problem is At = 0.001. To soh'e to near steady state (t = 0.50), 500 time

steps are needed. In order to solve test problem #2 using the multigrid and

adaptive grid methods, 6 grid levels with the coarsest grid containing 5 nodes

and the finest grid containing 129 nodes are used.

The multigrid and analytical solutions for various :r positions (x =

0.125, 0.25, 0.50) are plotted in Figure 5.2.1 . Likewise, in Figure 5.2.2,

the adaptive grid solution is presented along with the analytical solution for

the same x positions. The switching parameters used in the multigrid program

to solve the problem are a = 0.25,/_ = 0.125, and 71 = 0.50. The multigrid

method requires a total of 2212 WU (an average of 4.42 work units per time

step) to solve the problem in 7.82 CPU seconds. To investigate the multigrid

algorithm, several values of 6 and *t were used to solve problem #2. The

results obtained are tabulated in Table 5.2.1 in terms of computational work

65

w

w

U

1.3

1.0

0.8

0.1

0.4

0.3

0.0

-0.2
0.0

Multlgrid vs Analytical Solutions

X = 6.500

X - 0.250

X = 0.125

0.I 0.2 0.3 0.4

Time

Figure 5.2.1: Multigrld Solution to Problem #21

Analytical and Multlgrld Solutions Overlie

0.5

1.2

1.0

0.8

0.0

U

0.4

0.3

0.0

-0.3

.......... I ! I I

,Analytical vs Adaptive Grid Solutions

= 0.500

-- 0.:150

0.0
i [......... Is I . . , ,,, ,.. I

o.l 0.2 o J o.,

Time

Figure 5.2.2: Adaptive Grid Solution to Problem #2;

Analytical and Adaptive Grid Solutions Overlie

66

05

Table 5.2.1: Test Problem _2, Multigrid Results

average \¥U CPU time

5 77 total WU per time step (seconds)

0.25 0.220 0,625 2404 4.81 8.50

0.25 0.125 0,500 2212 4.42 7.82

0.25 0.125 0.700 2409 4.82 8.37

0,25 0.100 0,500 2212 4.42 7.87

0.25 0.100 0,450 2212 4.42 7.37

67

m

m

and C,PU time. Varying 6 and q had little effect on the overall efficiency of

the algorithm, yet the number of work units needed to solve the problem for

a given time step differed until the solution began to approach steady state

(see Figures 5.2.3 and 5.2.4).

In the first case (Figure 5.2.3), a pulse in the nmnber of work units needed

to obtain the solution (for a particular time step) appears just prior to a

steep 'drop off'. Tlle drop off i_ the amount of work units needed is also

present in the second case, Figure 5.2.4 . To explain the occurrence of these

effects, one should consider both the solution process or algorithm as well as

the actual solution to the problem being solved. With this in mind, as the

solution approaches steady state, it varies less and less with each new time step

and consequently, the initial estimate of the solution for each new time step

becomes more accurate. Also, as steady state is approached, the magnitude

of the low frequency err<_rs, which dominate this problem, decreases. When

this is coupled with nmltigrid process, the drop off and pulse shown in Figures

5.2.3 and 8.2.4 is produced. So, as the solution process progresses in time,

the need for additional coarse grid work (to smooth out low frequency errors)

is eliminated and the point wlwre this occurs shows up as a sudden drop off

in the numloer of work units required to soh'e this problem for the particular

time step. Prior to the drop off, tlw sohttion process goes from the coarsest

to finest grid level and then ret_rns to the coarser grids before finishing off on

68

II

o_

L,

10

9

8

7

6

s

4

3

2

!

o
0.0

......... I 1 L I i ' ''1' J

alpha -- 0.250

delta -- 0.125

eta = 0.500

o,1 0.2 0.3 0.4 0.5

Time

Figure 5.2.3: Work- Case #1

10

6
o_

5

L

......... I ' ' c_'_ [" _' "' I" I ""

alpha = 0.250

delta = 0.220

o
0.0 0.I 0.2 0.3 0.4

Time

Figure 5.2.4: Work - Case #2

69

0.5

the finest level. After the drop off, the solution process stops upon reaching

the finest level and then continues on to the next time step.

u

The pulse (Figure 5.2.3) is produced in a somewhat similar manner. Ini-

tially, the amount of low .:'equency error present in the estimate of the solution

leads to inefficient relaxation sweeps. This results in the algorithm cycling

back to the coarser grids (before reaching the finest level) to smooth out low

frequency errors. Then, upon reaching tile finest level for the first time, the

solution converges to the desired accuracy and the algorithm proceeds to solve

the problem for the next time step. Later, as the solution process approaches

steady state, the amount of low flequency errors decrease and results in a de-

lay of the onset of inet-Ecient relaxation sweeps until the finest level is reached.

At this point., execution returns to the coarser grids. Delaying the return

to coarser levels in this manner means that some of the additional work is

performed on the finer grids. It is this additional, and relatively costly, com-

putational work that produces the pulse.

Comparing the nmltigrid algorithm to both the Gauss-Seidel and tridi-

agonal methods yields results similar to those for test problems #1. The

Gauss-Seidel algorithm requires 54807 iterations in 116.6 CPU seconds to de-

termine the solution to near steady state (t = 0.50). Based on work units, the

multigrid method solves this problem 24.7 times faster than the Gauss-Seidel

algorithm, but is only 14.8 times faster when CPU time is compared. The

70

=

direct solver solves the problem out to steady state in 1.74 CPU seconds, or

4.54 times quicker than the multigrid method does.

The adaptive grid method solves the problem to steady state in 5.31 CPU

seconds and requires an average of 0.762 WU per time step. To compare the

performance of the adaptive grid and nmltigrid algorithms, both the number

of work units and the amount of CPU time needed to obtain the solution

is considered. Based on work units, the adaptive grid scheme is about 5.8

times faster than the multigrid method. While this appears to be a significant

improvement, this comparison may be misleading as it does not account for

the overhead (interpolations, bookkeeping, etc.) required by both methods.

By comparing CPU time, one finds that the adaptive grid method solves the

problem approximately 1.5 times faster. While the adaptive grid method

outperforms the multigrid program, it is still about 3 times slower than the

direct solver.

71

5.3 Results for Test Problem :_3

Test problem #3 is the one-dimensional convection-diffusion equation

given by (4.3.1). The problem is solved using a multigrid method employing

the use of an upwind/downwind Gauss-Seidelrelaxation scheme. For com-

parative purposesthe problem is solved with a direct solver. In addition, the

adaptive grid method is also_l_d to (:_btainthe solution. In order to solvetest

problem #3, the domain is discretizedonto a 225node grid. For the multigrid

and adaptive grid methods, S grid levelsareused with the coarsestand finest

grids containing 6 and 225 nodes respectively. The solution is found up to

near steady state (t = 0.20) using 200 time steps. To solve test problem #3,

a fixed time increment of At = 0.001is used in all the programs.

The multigrid and analytical solutions are shown in Figures 5.3.1 and

5.3.2. In Figure 5.3.1, the sohltion is presentedasit stands at a time of 0.05.

Figure 5.3.2showshow the solution at certain nodes(x = 0.25, 0.50,and 0.75)

vary with time up to the onset of steady state. The multigrid program with

the switching parameters set at a = 0.25, 6 = 0.22, and r/ = 0.70 is used

to solve this problem. The solution up to near steady state is found in 4.47

CPU seconds and requires an average of 15.5 WU per time step. Again, the

values of 5 and 77were varied in ()rder to see how they affect program efficiency

(see Table 5.3.1). For this ploblem, both the CPU time required to find the

solution and the average number of work units needed per time step remained

72

i

w

U

1.2

1.0

0.8

0.6

0.4

0.2

0.0

-0.2
9.0

.......... I] I I_ I I

Adaptive Grid vs Analytical Solutions

at time t=0.05

0.2 0.4 0,6 0.8

X

Figure 5.3.1: Adaptive Grid Solution to Problem #3,

Snapshot View

1,0

u

1.2

1.0

0.8

0.6

I1

0.4

0.2

0.0

-0.2

Adaptive vs Analytical Solutions

Time History of Nodes at Different x

x = 0.3'5

= 0.50

. , • • • |

, • , L _ J J , , l._ L ! ; J _ J _ i J ' h ' , , , , , , I , , , , ,

o.oo 0.05 o, lo o.15 o.._o

Time

Figure 5.3.2- Adaptive Grid Solution to Problem :#:3,

Time Histories; Analytica! and Multigrid Solutions Overlie

73

C_

0.25

0.25

0.25

0.25

0.25

0.25

0.25

0.25

Table 5.3.1: Test Problem _3, Results; Time -- 0.050

0.125

0.220

0.220

0.220

0.220

0.220

0.I00

0.300

0.500

0.625

0.700

0.800

0.500

0.400

0.700

0.700

0.700

total WU

879

821

773

920

872

859

828

815

CPU time

(seconds)

5.31

average WU

per time step

17.6

16.4

15.5

18.4

17.4

17.2

16.6

16.3

22.3

48.6

4.79

4.47

4.93

5.35

5.36

4.84

4.72

0.25 0.500 1114 6.59

0.25 0.700 0.700 2433 14.86

= .

"_ 2

w

74

=

relatively constant with respect to _ and r].

The adaptive grid solution to test problem #3 is compared to the ana-

lytical solution in Figures 5.3.3 and 5.3.4 . In Figure 5.3.3, the solution is

depicted as it exists at a time of t = 0.05, while Figure 5.3.4 shows how the

solution at selected nodes progresses dlrough time. The adaptive grid scheme

requires 3.87 CPU seconds to find the solution up to steady state and averages

1.06 WU per time increment.

In contrast to the results obtained from the multigrid and adaptive grid

algorithms, the direct sol_ltion (tridiagonal) method solves test problem #3 in

1.19 CPU seconds. Thus, the direct solver outperforms the multigrid method

again, but this time by about a factor of 13.7 times. The adaptive grid method

fared a bit better, as it ran about 3.5 times slower than the tridiagonal scheme

and about 4.2 times quicker th_n the multigrid algorithm. In further compar-

ing the multigrid and adaptive grid schemes, the multigrid method required

13.11 times more work units to determine the solution up to near steady state.

75

U

1.2 I I I !

1.0

• 0.8

0.6

, ° ,

0.4

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0

X

Figure 5.3.3: Multlgrid Solution to Problem :#:3, Snapshot View

1.2

!.0

0.8

0.6

U

0.4

0.2

0,0

......... I _ ' " I '1

Multigrid vs Analytical Solutions

Time History of Nodes at Different x

% x : 0.75

\

o.oo o.os o.lo o.ls o.2o

Time

Figure 5.3.4: Multigrid Solution to Problem #3, Time Histories;

Analytical and Multigrid Solutions Overlie

76

L

m

m

w

w

w

5.4 Results for Test Problem #4

Test problem #4 uses the nonlinear viscous Burgers' equation given by

(4.4.1) and (4.4.2). This problem is solved using both an iterative tridiago-

nal and adaptive grid algorithms. As the analytical solution to test problem

#4 was not found, the adaptive grid algorithm is verified by comparing its

solution to that found using _he tridiagonal method. The Burgers' equation

is discretized onto a 1025 node grid. The adaptive grid program uses 8 levels

of discretization with tllo c_,qr._¢'._t level containing 9 nodes. The solution is

found up to t = 1.00 using 100 thne steps with the constant time increment

At = 0.01 . The problcln is _ls_ solved using larger time increments in order

to determine the largest time step which will yield a satisfactory solution.

The tridiagonal program, used to generate the data presented here, uti-

lizes the adaptive grid residu_l norm (for the analogous adaptive grid case)

from the final time incrcme_t as the convergence criteria for each time step.

So, the convergence criteria renlains the same from one time increment to

another. Additionally, t h__, tridi_gonal program was modified such that the

adaptive grid residual norm fz'om each time step (found from the finest grid

level) is used as the convergence criteria for the corresponding time increments.

This alteration in the t_'idiagonal program did not result in any appreciable

changes in the performance of the program for this problem.

77

The solutions from the tridiagonal and adaptive grid programs are pre-

sented in Figure 5.4.1 . The adaptive grid method solvestest problem #4 in

approximately 9.32 CPU secondsand requires an averageof 0.661 _VU per

time step. In contrast, the direct solver (which employs Picard iterations to

handle the nonlinear terms) finds the solution in 30.37 CPU secondsand re-

quires an averageof 7.04 work lmits (iterations) per time step. So, for this

problem, the adaptive grid program is about 3.26 times faster than the tridi-

agona.1method. Comparing computational work shows that the tridiagonal

method requires about 10.66 times more work units than the nonlinear adap-

tive grid algorithm.

The nonlinear adaptive grid program parameters, toler and e, are varied

in order to see what affect they have on program flow and the resulting solu-

tion. For this problem, variations in toler (the criteria applied to the change

in the residual norm between iterations (Ae = e k -- gk) to determine whether

additional Picard iterations are required) have ahnost no effect on the solu-

tion and solution process (see Table 5.4.1). This occurs because the solution

rapidly converges within each subgrid, usually within 2 or 3 iterations. With

the exception of the coarsest grid, the residual norms, calculated within each

subgrid, become constant (Ac = 0) in 2 iterations. Thus, varying toIer has lit-

tle effect as it is designed to signaI when the residual norms become constant.

Since the residual from the adaptive grid program is used as the convergence

78

m

......... I I I I I

O

oJ,,a

i oo

{P
_pnO

@
rJ2

peel

@

oJil

-r_

o_

w_nlg_ma

@
bO

l I i |,_ I I

79

o_

o_• %

r,,,,,

@

e_ia

@

•

r_

e_

_u

o_

!

Table 5.4.1: Test Problem =/p4 Results, Variations in toler

where log(_) = -8, and At = 0.01

adaptive subgrids use 2 converged nodes per boundary

log

toler

-2

-3

-4

-5

-6

-7

-8

-9

AD

average

\VIj per

time step

TRID

\VU per

time step

AD

CPU

time

SCC

TRID

CPU

time

see

AD

residual

Ilr- L,LII

TRID

residual

I"

.643 7.04 9.35 30.37 3.81E-4 2.26E-4

.647 7.04 9.28 30.37 3.81E-4 2.26E-4

.652 7.04 9.32 30.37 3.81E-4 2.26E-4

.657 7.04 9.30 30.37 3.81E-4 2.26E-4

.663 7.04 9.28 30.37 3.81E-4 2.26E-4

.669 7.04 9.39 30.37 3.81E-4 2.26E-4

.675 7.04 I 9.34 30.37 3.81E-4 2.26E-4

.681 7.04 9.34 30.37 3.81E-4 2.26E-4

IIF- r ,ll

b

8O

w

u

u

criteria for the direct soh'er, tile residuals found by the tridiagonal method

remain constant for each of the cases presented in Figure 5.4.1.

The parameter e is the convergence criteria (applied to the relative trun-

cation error) used to construct the adaptive subgrids. The more stringent

(smaller) e becomes, the more the adaptive grid algorithm strives to improve

the accuracy of the solution by adding finer grids. As e is decreased, the al-

gorithm attempts to improve the accuracy of the solution at the expense of

increased computational u'ork see Figures 5.4.2 and 5.4.3). If the value of e is

too large, not enough computati()nal work is invested in order to adequately

resolve the location of the front present in the solution. This results in a solu-

tion in which the front lags behind its actual location. As depicted in Figure

5.4.4, the larger e is, the more the front lags. The data collected while varying

e is presented in Tables 5.4.2a and 5.4.2b .

The size of the time increments used are important. Using a time incre-

ment of 0.01 results in a sohtti<m with a well defined front. Increasing the

size of the time steps, reduces tl_(, CPU time needed to solve the problern, but

will result in some diffusion lining present in the front. Using still larger time

increments, adds an increasing amomlt of diffusion as shown in Figure 5.4.5 .

Time increments smaller than 0.01 may be used to obtain a slightly more

accurate approximation of the solution, but will require a great deal more

computation time (see Figure 5.4.6 and Table 5.4.3). The largest time inere-

$1

m

ment yielding a satisfactory solution is At = 0.01 . For this case the adaptive

grid algorithm is 3.26 times faster than the tridiagonal method.

i

$2

m

5
.p-q

4

1

o
-I0

......... I ' r I I "_': '; ;'" ! I ! I

@ - Tridiagonal Method

@ _ _ * - AG, log(toler) = -4

• _ • - AG, log(toler) = -7
• " = 0.01

i l i i i i i i i i i zl i I ,, ,,,, L_IIL L ill J ' l'|* _ ' '2'1"

-9 -8 -7 -6 -5 -4 -3 -2 -I

log (epsilon)

Figure 5.4.2: Work vs. Log(e), Burgers' Equation

m

v

=
i-

s

35

3O

35

Qq

o 2O

15

_9

lO

o
-1o

......... I I I I I I I I I ' "

• - Tridiagonal Method

v v _ • - AG, log(toler) = -4

• - AG, log(toler) -7
• " nt 0.01

,_.,,,l, ,,,I.,,,.,,,,I I I I......... I,,,, I.,, I

-9 -8 -7 -6 -5 -4 -3 -2 -1

log (epsilon)

Figure 5.4.3: CPU Time vs. Log(e), Burgers' Equation

83

• d-2

U

1.3
"" I'''_''_''l I I I I [...... _''t I t_

time increment = 0,01

1.0

__- e = 1.0E-8

I e = 1.0E-4o.s

s e = 1.0E-3
l

0.8

0.4

0.2

o o _

0,0 0.I 0,2 0,3 0.4 0.5 0.6 0.7 0.8 0.9 l.O

X

Figure 5.4.4: Effects on the Solution Caused by Varying e

w

1,2

1.0

0.8

0.6

U

0.4

0.2

0,0

time .sta !). = 0.01)

tinane step = 0.1{t_

time step 0.20-"'-

Adaptive Grid Sol.tions

-0.2 ! ,I l, I I,,,, 1 _1 ,,,,I I t,

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.,_ 0.9 .0

X

Figure 5.4.5: Diffusion of Front Due to Large Time Increments

84

u

Table 5.4.2a: Test Problem #4 Results, Variations in e

where log(toler) = -4, and At = 0.01

log

-9

-8

-7

-6

-5*

-4*

-3*

AD

average

WU per

time step

TRID

average

WU per

time step

AD

CPU

time

SeC

TRID

CPU

time

S¢C

AD

residual

IrF- r ll

TRID

residual

liE- 5,,11
•732 7.04 9.42 30.37 3.81E-4 2.26E-4

.652 7.04 9.32 30.37 3.81E-4 2.26E-4

.570 7.04 8.88 30.37 4.08E-4 2.26E-4

.475 6.05 8.62 25.90 1.21E-3 8.34E-4

.369 4.01 8.19 17.21 3.11E-2 1.07E-3

.208 2.02 7.71 8.68 0.2097 0.1289

.112 1.07 7.27 4.56 0.4192 0.4165

w

Table 5.4.2b: Test ProMem @4 Results, More Variations in e

where h)g(toler) = -7, and At = 0.0I

log

-9

-8

-7

-6

-5"

-4*

AD

average

WU per

time step

.732

.652

.570

.475

.369

.208

TRID

average

WU per

time step

7.04

7.04

7.04

6.05

4.01

2.02

AD

CPU

time

sec

9.52

9.22

8.90

8.57

S.24

7.59

TRID

CPU

time

see

30.37

30.37

30.37

25.90

17.21

8.68

AD

residual

1If- r ,ll
3.81E-4

3.81E-4

4.08E-4

1.21E-3

3.11E-2

0.2097

TRID

residual

2.26E-4

2.26E-4

2.26E-4

8.34E-4

1.07E-3

0.1289

* fl'ont lags

85

O

! !

| w t i _ll|l w | p | i| | w ! t ! |

+ + +

spuo_os '_tu!_. D_dD

86

om

O

%

tm
t.,

.d

wJ

L

=

w

Table 5.4.3: Test Problem #4 Results, Time Increment Varied

where log(e)= -8

At

sec

0.005

0.01

0.02*

0.04*

AD

average

\VU per

time step

0.549

0.652

0.822

1.09

TRID

average

\VU per

time st, ep

6.02

7.04

9.04

10.12

AD

CPU

time

sec

17.47

9.32

5.01

2.72

TRID

CPU

time

sec

50.31

30.37

20.02

12.06

AD

residual

IIF- L_II
2.89E-4

3.81E-4

3.62E-4

2.80E-4

TRID

residual

[IF- L,,,I1

0.0625* 1.34 11.19 1.90 8.56 2.68E-4

0.10" 1.61 12.30 1.30 5.94 4.36E-4

0.20* 2.02 14.40 0.75 3.52 9.63E-4 1.42E-4

0.40* 2.03 14.00 0.32 1.74 9.30E-2 1.57E-4

9.15E-5

2.26E-4

1.43E-4

2.66E-4

2.46E-4

2.37E-4

* diffusion of front

87

5.5 Results for Test Problem _/_5

The fifth test problem is the nonlinear Richards' equation (presented in

Chapter 4.5) modelling one-dimensional water flow in an unsaturated soil.

This problem is soh,ed using an adaptive grid algorithm and the tridiagonal

method, each of which eml)loys _lte use of Picard iterations to handle the

nonlinearities. As with the previous problem, the adaptive grid and tridiag-

onal solutions are compared with each other, since the analytical solution to

the problem is not known. T() get an equitable comparison between the two

methods, the Picard iterations for the tridiagonal scheme are continued until

the residual is the same as that found by the adaptive grid program. For the

adaptive grid scheme, the problem is discretized such that the finest grid con-

tains either 481 nodes, or 641 nodes. The total number of grid levels used, as

well as the number of nodes on the coarsest grid, are varied in order to see how

they affect the solution and computation time. The tridiagonal method soh'es

this problem on uniform grids consisting of 4S1 nodes, and 641 nodes. Both

algorithms solve the problem up to times of 5, 15, and 35 days. The resulting

solutions are plotted in Figure 5.5.1 . Additionally, various time increments

are used in solving test problem #5, up to times of 5, 15, and 35 days.

A problem arising with the nonlinear tridiagonal algorithm is one in which

the low frequency errors present in the solution cause the relaxation sweeps

(iterations) to become very in(_fficient. This leads to a situation where the

88

=

=

= =

w

r _

¢q

II II II

_J _9 ¢J

ua)uo: JO_A_

89

¢D

_J

0

!

%

f_

_J
m

0_

l

h_

J_

_5

_J

_J

I

0

@

_5

h

w

residual remains ahnost consI;ant between iterations, and may even converge

on a value greater than the one desired, resulting in an infinite loop. To detect

such an occurrence, the parameter 'tolerce' is introduced into the tridiagonal

algorithm and compared against the change (since the previous iteration) in

the residual norm _e. As long as 5e > toIcrce, the algorithm proceeds as

usual. When 5e < tolcrce, the Picard iterations are halted (as if the residual

had converged to within the d_:._ired accuracy) and the tridiagonal algorithm

proceeds to solve for the next time ._tep. Doing this, avoids creating an infinite

loop, but tends to 'lock in' a lmv frequency error into the solution, which

consequently gets propagated onto the remaining time steps.

The water infiltration problem is solved up to a time of 5 days, using

a time increment of 0.10 day, with both the adaptive grid and tridiagonal

algorithms. Performing a mass balance shows a gain in mass of 0.104 cm H20

(about 1.15 percent of the total mass within the domain) in the solutions found

by each algorithm. The tridiagonal method solved the problem on a 481 node

grid in 309.95 CPU seconds. The adaptive grid program solves the problem

using several grid levels, such that the finest grid contains 481 nodes. The

program was run several time's, as the number of grid levels, and convergence

criteria (e) were varied. For t h('se cases, the adaptive grid method solves the

problem anywhere from 66.14 to !42,02 CPU seconds, depending upon the

value of e and the number of grid levels used (see Table 5.5.1).

9O

=

i

om,i

Z d

°,=.

.,.=,

,-...,i

°
_P

,.Q

i i I t I I i i I i

m

I

O

0

. ,.-,i

N?

,-C

r_

O
N)

N?

. ,,.,i
4_

0
N?

91

L.

a....

w

In each case, the adaptive grid method obtained a residual value of 5.614 x

10 -5. The tridiagonal scheme attempted to obtain a solution of equal accuracy

(by using the residual value t_ obtained t)5" the adaptive grid method as the

convergence criteria), but only managed to get a residual of 1.615 x 10 -4. This

occurred because low fl'equency errors in the solution led to very inefficient

relaxation sweeps which converged on a residual value greater than the one

sought. So for this case, the adaptive grid algorithm outperformed the tridi-

agonal scheme, solving the prc_Mem 2.23 to 4.69 times faster, while obtaining

a residual value approximately half an order of magnitude less than that from

the tridiagonal method.

The two algorithms are also used to solve the water infiltration problem

discretized onto a grid (or finest grid) with 641 nodes, up to a time of 5 days,

using a time increment of 0.10 day. In finding the solution, both algorithms

produce a mass gain of 0.07S cm H.,O or about 0.86 percent of the total mass.

The program using the tridiagonal method soh'ed this problem in 379.26 CPU

seconds with a residual value of 1.365x 10 -4. The adaptive grid method obtains

the solution in S0.,50 to 194.77 CPU seconds (about 1.9,5 to 4.71 times faster

than the tridiagonal method), while obtaining a residual value of 5.732 x 10 -5

(see Table 5.5.2).

92

w

Table 5.5.2: Test Problem _5, Results ; 641 Fine Node Grid*

where log(toIer) = -5, time = 5 days, and At = 0.10

of

grid

levels

nodes

coarsest

grid

3 161

4 81

5 41

6 21

7 11

3

4

5

6

7

3

4

5

6

7

161

81

41

21

11

161

81

41

21

11

AG

CPU

time

sec

194.77

TRID

CPU

time

sec

379.26

124.87 379.26

111.88 379.26

89.14

80.50**

190.99

125.51

379.26

379.26

379.26

379.26

AG

residual

lie- L ,II

TRID

residual

]IF- Lull

5.732E-5 1.365E-4

5.732E-5 1.365E-4

5.732E-5 1.365E-4

5.732E-5

5.732E-5

1.365E-4

1.365E-4

5.732E-5 1.365E-4

5.732E-5 1.365E-4

98.52 379.26 5.732E-5 1.365E-4

87.76 379.26 5.732E-5 1.365E-4

83.21 379.26

379.26

5.732E-5

5.732E-5

5.732E-5

5.732E-5

9319.26

379.26

190.30

125.$2

1.365E-4

1.365E-4

1.365E-4

1.365E-498.96

87.68 379.26 5.732E-5 1.365E-4

83.78 379.26 5.732E-5 1.365E-4

log

ff

-6

-6

-6

-6

-6

-8

-8

-8

-8

-8

-9

-9

-9

-9

-9

* tridiagonal and adaptive grid algorithms each yield mass gains of 0.0784 cm Ho.O

** adaptive grid mass loss= 0.0112 cm H20

93

For the adaptive grid algorithm, the number of grid levels and the conver-

gence criteria are varied in order to see what effect they have on the solution

and computation time. These cases are presented in Table 5.5.1 and Table

5.5.2. Increasing the number of grid levels results in a decrease of the compu-

tation time required to soh'e the problem, yet it has no effect on the residual

norm. Variations in the convergence criteria also have no effect on the residual

norm. Additionally, tile time no,:ded to solve the problem remains approxi-

mately constant as tile convergence criteria is varied. For example using 6 grid

levels and a finest grid of 641 nodes, the problem is solved in 89.14 seconds

with _ = 10 -6. Decreasing the convergence criteria to , = 10 -s results in a

requirement of 87.76 CPU seconds to solve the problem, a further reduction

to _ = 10 -9 results in a time requirement of 87.68 CPU seconds.

In solving problem #5 out to 15 days using /St = 0.10 day, the perfor-

mance of the adaptive grid method degrades as more computation time is

required per time step, but it is still the faster of the two. The degradation in

performance worsens as die problem is solved up to a time of 35 days while

using the same time increment. _:ith tl_e adaptive grid algorithm, the adap-

tive subdomains appear near t h(: fl-ont and over those portions of the domain

behind the front. The extent of the subgrids used to solve the problem at a

time of 15 days is sho_vn in Figure 5.5.2. As the solution progresses in time,

the location of the front penetrates deeper and deeper into the domain,

94

m

u

e

......... I '1 '"_" _ I

H

lillillllllll|llillllii ilia t il 11 illll

g5

w

and consequently allows for the subdomains to cover larger portions of the

domain, resulting in a slowing of tile algorithm. For example, problem #5 is

solved on a 4S1 node grid, using a time increment of 0.20 day. The adaptive

grid method obtains a solution fo," t_ time of 5 days, 5.05 times faster than

the tridiagontd scheme. In solving the problem out to 15 days, the adaptive

grid method is 3.57 times faster. And finally in solving the problem out to 35

days, the performance of the adaptive grid degrades even further as it is only

2.60 times faster than the tridiagonal scheme.

The Richards' equation is solved (up to times of 5, 15, and 35 days) several

times with both programs as the time increments are increased with each new

set of computer runs. The data collected are presented in Tables 5.5.3, 5.5.4,

and 5.5.5. As the time steps are increased, errors in the mass conservation

slowly rise. Additionally, oscillations in the residual error (F - £u) appear

with the use of the larger time increments (see Figures 5.5.3, 5.5.4, and 5.5.5).

The spikes appearing in Figures _5.5.B and 5.5.4 occur at most subdomain

boundaries. The magnitude of the spikes generally decreases as smaller time

steps are used. These spikes occur since Dirichlet conditions are applied to

the subdomain boundaries (which are in the interior of the domain and do not

correspond to the actual boundaries of the problem), and so, the flux across

these boundaries is not considered in the current numerical model. This leads

to the introduction of the errors appearing at the subdomain boundaries.

96

Table 5.5.3: Test Problem #5, Results for Time -- 5 days

where log(e_)= -8 and log(toler) = -5

AG

residual

TRID

residual

IrE- f_,i[

AG

CPU

time

See

TRID

CPU

time

sec

AG

mass

gain

cm H2 0

TRID

mass

gain

cm H2 0

At

day

for 6 grid levcls and 481 nodes on finest grid

1.05E-5

2.80E-5

5.61E-5

1.25E-4

3.93E-4

6.15E-4

3.50E-5

8.50E-5

1.62E-4

2.95E-4

6.53E-4

8.26E-4

9.51E-4

1.18E-3

1.60E-3

1.56E-3

254.0

116.9

67.7

41.0

27.8

30.2

751.8

403.6

310.0

206.9

153.2

106.7

95.76

82.43

76.13

82.55

8.66E-3

0.1041

0.1042

0.1045

0.1057

0.1051

0.1040

0.1041

0.1042

0.1045

0.1058

0.1052

0.1064

0.1065

0.1056

0.1061

0.02

0.05

0.10

0.20

0.50

0.59*

0.70*

0.92*

for 7 grid levels and 641 nodes on finest grid

1.07E-5 3.27E-5 321.05 1037.2 0.0424 0.0783 0.02

2.72E-5 7.90E-5 147.85 625.42 0.0783 0.0783 0.05

5.73E-5 1.48E-4 83.21 496.00 0.0785 0.0784 0.10

1.22E-4 2.66E-4 50.65 280.43 0.0787 0.0787 0.20

3.90E-4

6.30E-4

5.94E-4

7.88E-4

30.24

33.53

176.99

146.31

0.0797

0.0790

0.0798

0.0791

* error in location of front, front lags

** numerical instabilities resulting in rnath overflows

97

Table 5.5.4: Test Problem _5, Results for Time -- 15 days

where log(_) = -8 and log(toler) = -5

AG

residual

IIF- Lull

TRID

residual

lit- L.IJ

AG

CPU

time

SCC

TRID

CPU

time

see

AG

nlass

gain

cm H20

TRID

mass

gain

em H20

_t

day

for 6 grid levels and 481 nodes on finest grid

7.02E-6 1.51E-4 297.40 1265.8 0.109 0.109 0.10

1.49E-5 2.65E-4 202.30 721.58 0.109 0.109 0.20

511.39 0.111 0.1112.37E-5

3.83E-5

9.04E-4

4.50E-4

5.80E-4

6.49E-4

145.47

153.31 691.82

434.96

448.88

0.111 0.084

0.111

0.112

0.50

0.57*

1.56E-3 82.55 0.106 0.80"

for 7 grid levels and 641 nodes on finest grid

8.83E-6 1.35E-4 391.22 1552.7 0.082 0.082 0.10

1.78E-5 2.36E-4 246.01 1075.4 0.082 0.082 0.20

2.57E-5 4.57E-4 167.51 717.07 0.083 0.083 0.50

4.40E-5 5.06E-4 173.80 707.37 0.082 0.082 0.58*

* error in location of front, front lags

** nmnerical instabilities resulting in math overflows

98

Table 5.5.5: Test Problem _5, Results for Time -- 35 days

where log(e_) = -8 and log(toler) = -5

AG TRID

residual residual

IIF - L.tl IIF- L.ll

1.11E-5

2.47E-5

1.13E-4

6.11E-5

8.12E-5

AG

CPU

time

SCC

TRID

CPU

time

sec

AC

mass

gain

cm H20

for 6 grid levels and 48t nodes on finest grid

TRID

mass

gain

cm H20

1.50E-4

2.66E-4

4.57E-4

5.66E-4

2.31E-3

1021.1

656.53

535.42

575.53

2242.1

1705.6

1711.3

1277.5

1439.4

0.109

0.109

0.II0

0.111

0.109

0.109

0.083

0.111

0.111

for 7 grid levels and 641 nodes on finest grid

2.36E-4 899.81 2535.3 0.082 0.082

1.84E-4 4.57E-4 643.53 1721.8 0.083 0.083

9.23E-5 5.06E-4 711.81 2480.8 0.084 0.083

_t

day

0.10

0.20

0.50

0.57*

0.20

0.50

0.58*

* error in location of fl'ont, fl'ont lags

** numerical instabilities resuhing in math overflows

99

L.
O3

k

[•

8.O0E-05

7.00E-05

8.00E-05

5.00E-05

4.00E-05

3.00E,-05

2.00E-05

!.00E-05

0.OOE+00

-I.00E-05

-2.00E-05

-3.00E-05

-4.00E-05

-5.00E-05

-6.00E-05

-7.00E-05

-8.00E-05
0

........ ' I |_ I I

481 nodes, time = 35 days

time increment = 0.20 day

I00 200 300 400 500

node

Figure 5.5.3: Adaptive Grid Residual Error, Case 1

k
O

8.00E-05

7.00E-05

6.00E-05

5.00E-05

4.00E-05

3.00E-05

3.00F__05

1.00F_0S

O.OOE+O0

- 1.00E-05

-2.00E-05

-3.00E-05

-4.00E-05

-5.00E-05

-6.00E-05

-7.00E-05

-8.00E-05
0

I , I I I'"'

I00

481 nodes, time = 35 days

time increment = 0.50 day

, i , , , i , J t | I J i , • , , , , | z I i i J , i i , | • • i i , , , , ,

200 300 400 500

node

Figure 5.5.4: Adaptive Grid Residual Error, Case 2

100

........ 1........1........ 1........ 1........1........1........1........1........ 1........ 1........1.........II1.........I

II II

........I.........I,J,........II........J.........I................ III.........II,,,,,_.,II

0
C_

0
0

0
0

0

0

aoaaa [_np!sa.I

I01

o

0

0

,ml

e_

<

For the adaptive grid method, using time steps larger than 0.58 day results

in math overflows. For the tridiagonal scheme, the overflows occur at much

larger time increments. Yet fl:)r both algorithms, the computed location of

the front begins to lag behind its actual location for large time steps which

do not induce math overflows. The lagging front becomes apparent for time

increments larger than 0.50 d_,5" fl)r both algorithms.

As with the previous problem, tile size of the time increment is impor-

tant. For this problem, time increm_:nts larger than 0.50 day will either yield

solutions in which the front lags behind its actual location or produce math

overflows. Time steps smaller than 0.50 day will generally result in solutions

with a well defined and properly located front. While the use of smaller and

smaller time increments will give an increasingly accurate solution, it is not

without cost. A reduction in the_' size of the time step can significantly increase

the computation time required to solve t.he problem, as is shown in Figures

5.5.6, 5.5.7, and 5.5.8 .

The tridiagonal method used to soh'e the Richards' equation used the

adaptive grid residual norm, fcmnd ii"om the finest grid level at the final time

step, as its convergence criteria. As before, the tridiagonal program was mod-

ified such that the adaptive grid residual norm from each time step is used as

the convergence criteria for the? corresponding time increments. This change

resulted in a slight improvement in the performance of the direct solution

102

method (seeTable 5.5.6), witli the t.ridiagonal program running about 1.1 to

1.2 times faster than before.

103

w

o
¢0

D

1100

IOOO

900

800

700

600

500

400

......... I I I I I

time --- 5 days

1 - TridiagonM method, 641 nodes

2 - Tridiagonn.l method, 481 nodes

3 - Ad_,ptive grid method, 641 nodes

4 - Adaptive grid method, 481 nodes

3OO

2_ 3 --

0
0.0 0.1 0.2 0.3 0.4 0.5 0.6

Time Increment (day)

Figure 5.5.6: CPU Time vs. Time Step;

Richards' Equation at Time = 5 days

1600

1400

1200

"_ 1000
es
0

S00

D

D 6oo

400

200

......... ,_' I I I I _ '

time : 15 days

1 - TridiagonM method, 641 nodes

A" x.X. 2 - TridiagonM method, 481 nodes

_1 3- Adaptive grid method, 641 nodes

......... I I I J i Ii L J _ _ _ i ,* I " I , I I , , ,

0.0 0.1 0.2 0.3 0.4 0.5

Time Increment (_iay)

Figure 5.5.7: CPU Time vs. Time Step;

Richards Equation at Time -- 15 days

104

0.6

w

......... I 1........ 1........ 1........ 1........ T 1........ T""r"i ' 1........ 1........ 1........ 1......... I

i

....... J........ J........ J........ J........ J'J........ J J........ J........ J........ J........ J,.,,,,,J ,I.......

¢,.C'

6

.4,.1

Q;

r,,;

I,--I

Q;

ip=l

1-,i
6

_D

spuo3as fld_

105

h_

II

b_
.4,,a

0

%

o_

ml,,_

IN

b_

d

w_,,4

b_

L_

Table 5.5.6: Results For tile Alternate Tridiagonal Method

where log(e,:) = -8 and log(toler) = -8

Time A_

day sec

5 0.5

5 0.2

5 0.I

15 0.5

35 0.2

fOI'lllCl'*

nla Ss

gain

cm H20

air**

Iltass

gain

cm H20

former*

CPU

time

sec

alt**

CPU

time

sec

speed

up

•1057 .1055 153.2 124.3 1.232

.1045 .1038 206.9 204.2 1.013

.1042 .1032 310.0 250.0 1.240

.1110 .1103 511.1 434.6 1.176

.1090 .1083 1705.6 1552.1 1.099

* original tridiagonal soh'er; convergence criteria constant for all time increments

** alternate tridiagonal solver; convergence criteria varies with time steps

106

Chapter 6

Conclusions and Recommendations

6.1 Conclusions

The purpose of this project is to investigate the use of the adaptive grid

and multigrid methods for the" fast and efficient solution of one-dimensional

problems, and apply the most promising of the methods toward finding the

solution of the nonlinear, one-dimensional transport problems.

The adaptive grid and muhigrid programs were first applied to the so-

lution of linear one-dimensional problems. Test problem #1, an ordinary

differential equation, is designed such that it contains both low and high fre-

quency terms in its solution. In solving this problem, the tridiagonal and

multigrid methods easily resolve 1)_th the high and low frequency terms, while

the Gauss-Seidel method had to use a very large number of iterations to re-

solve the low frequency terms. For the transient cases (test problems #2 and

#3), the performance of the nmltigrid method improves as steady state is

approached. For these problems, the adaptive grid and multigrid programs

are significantly faster than the Gauss-Seidel method, with the adaptive grid

scheme running about 1.5 to 4 times faster than the multigrid method. While

the adaptive grid algc_rithm is ilL(" fastest of the iterative methods, it is still

about 3 times slower than the tridiagonal method.

107

w

L._

w

r

In order to soh'e tile nonlinear problems, Picard iterations are incorpo-

rated into the adaptive grid and tridiagonal programs. These two algorithms

were used in soh, ing the Burger,_' equation. Both methods obtained solutions

of similar accuracy, with the adaptive grid scheme finding the solution 3.26

times faster than the tridiag(m_l method. In solving the Richards' equation,

the tridiagonal scheme has problcnls eliminating low frequency errors, and so

is unable to achieve the accuracy obtained by the adaptive grid method. For

this problem, the adaptive grid prc_gram is approximately 2 to 4.7 times faster

than the tridiagonal scheme. F<u' both nonlinear problems, the largest time

increment yielding a satisfactc_ry solution is the same for the two algorithms.

The performance of the adaptive grid and multigrid algorithms generally

improved as the number of grid levels were increased. The adaptive grid

method shows lots of promise toward the solution of nonlinear one-dimensional

problems, despite being outperformed by the tridiagonal method when solving

linear problems. For the nonlinear c'quations soh'ed, the adaptive grid scheme

is about 3 times faster than thc_ itc_t:ative tridiagonal method. The adaptive

grid program can easih" smoc)th cmt the low and high frequency errors present

in the approximation, even whcn these errors pose a problem to the iterative

tridiagonal scheme. Thus in some cases, such as for the Richards' equation,

the adaptive grid algorithm computes a more accurate solution than does the

tridiagonal method. With prol>lems which have moving fronts penetrating

108

into undisturbed portions of tile domain, the performance of the adaptive

grid scheme degrades as the solution progressesin time, but still remains

faster than the tridiagonal method.

In Summary, (seeTable 6.1.1) for the linear problems presented in this

work, the adaptive and multigrid programs performed about the same,with

the adaptive grid schemebr_qngslightly faster than the multigrid method.

Both the adaptivegrid and multigrid programseasilyoutperformed the Gauss-

Seidel method, but were approximately three to four times slower than the

direct solver (tridiagonal metlmd). For the solution of the nonlinear problems,

Burgers' equation and Ilichards' equation, the situation reverseditself with

the adaptive grid program obtaining the solutions about three times faster

than the tridiagonal method incorp_rating Picard iterations.

109

m

m

o_

o

0

C_

_5

0

_5

c_

°_

_D

0

0

r_

°_,,_

Ii0

u

w

6.2 Recommendations

The adaptive grid method performs well in finding the solution to the

nonlinear problems considered here. Particularly when it is applied to solving

the water content formulation of the Richards' equation. Further consideration

of this method (and its derivatives) for the solution of the Richards' equation

and other nonlinear problems is suggested.

Certain alterations to the adaptive grid program should be considered in

order to improve the efficiency and accuracy of the algorithm. Currently, the

nonlinear adaptive grid algorithm uses a series of finer and finer grids to solve

a problem, but, it does not allow for any cycling between the coarser and finer

grids. So, when the relaxation sweeps on a finer grid level become inefficient

(due to the presence of low fl'equency errors), the algorithm does not seek to

go to a coarser grid on which these errors can be easily reduced. Therefore, it

is recommended that the adaptive grid and multigrid methods be combined

so as to allow for a cycling of the solution process between the coarse and fine

grids.

In the current adaptive grid algorithm (as well as with the tridiagonal

method employing Picard i ter_tions) small errors in mass balance are present.

Both smaller time increments and denser grids containing more nodes may

be used to improve the mass balance and the accuracy of the solution, but

at the added expense of an increase in computational work (work units) and

111

k

computation time, which can be very significant. The adaptive grid method

may offer a way to improve the mass balance at a minimal cost. Part of the

p_;oblem lies with the maintenance of a proper mass balance in the approxima-

tion used on the various adaptive grids. The adaptive grid method presented

uses Dirichlet conditions for the boundaries of the adaptive subdomains. The

one exception to this rule applies to the subdomain boundaries corresponding

to the actual boundary of the problenl; in this case tile actual boundary con-

dition (as posed by the problem of interest) is used. The use of the Dirichlet

condition for subdomain 1)om_daries neglects to consider any flux entering or

leaving the subdomain. This increases errors in the mass balance and gives

rise to the appearance of an error (a spike) in the residual at the subdomain

boundary, which can trigger the creation of an additional subdomain at a

finer grid level. As a corrective step, Neumann conditions (or Robins condi-

tions), which specify the value of the flux at a boundary, may be useful at the

subdomain boundaries. Doing this will improve the maintenance of a proper

mass balance, and either reduce or eliminate the spike in the residual error.

Elimination of the spike is imp_ltant, as the spike may result in the creation

of additional, perhaps unnecessary subdomains.

As the program proceeds to step through time, the final solution at each

time step is used as an the initial estimate for the next time step. While

this works rather well, it introduces errors into the initial approximation for

112

m

the new time step as a proper mass balance is not maintained from one time

increment to the next. These errors may induce additional computational

work. Providing the new time step with a more accurate estimate of the end

time step solution (with a correct mass balance) may serve to enhance the

performance of tile algorithm. For problems with steep moving fronts (such

as for the Burgers' and Richards "_equations solved in this study), the velocity

of the front may be calculat<,d from previous time steps and used to provide

a better estimate of the solution to the next time increment.

w

113

References

[1] Alcouffe, R. E., Achi Brandt, .J.E. Dendy Jr., and J. W. Painter, The Multigrid

Method for the Diffusion Equation with Strongly Discontinuous Coefficients,

Siam Journal on Scientit_c and Statistical Computing, Vol. 2, Num. 4, pp.

430-454, 1981.

[2] Brandt, Achi, Multi-Level Adaptive Technique (MLAT) For Fast Numerical

Solution to Boundary Value Pr()blems, Lecture Notes in Physics, Springer-

Verlag, New York, Vol. 18, pp. 82-$9, 1973.

[3] Brandt, Achi, Multi-Level Adaptive Solutions to Boundary-Value Problems,

IVIathematics of Computation, Vol. 31, Num. 138, pp. 333-390, April 1977.

[4] Brandt, Achi, Muhilevcl Adaptive Techniques (MLAT) for Singular-

Perturbation Problems, Numericnl AnaS, sis of Singular Perturbation Prob-

lems, pp. 53-142, Academic Press, London, 1979.

[5] Brandt, Achi, Guide to _Iultigrid Development, Lecture Notes in Mathemat-

ics: _/Iulti-Grid J_Iethods, \V. Ha,:klmsc!a and U. Trottenberg, editors, Springer-

Verlag, New York, 19S2.

[6] Carey, G. F., and A. Pandanami, *[ultigrid Solution of Convection-Diffusion

Problems, paper presented at the Fourth Copper Mountain Conference on

Multigrid Methods, April 1989.

[7] Hedstrom G. W., and G. H. Rodrique, Adaptive-grid Methods for Time-

dependent Partial Differential Equations, Lecture Arotes in _fathematics:

Multi-Grid Methods, W. Hacklmsch and U. Trottenberg, editors, Springer-

Verlag, New York, 1982.

114

m

[8] Heroux, Michael A., and J. W. Thomas, TDFAC: A Composite Grid Method

for Time Dependent Problems, Proceedings of the Fourth Copper 5Ioun-

rain Conference on _'I_zltig,'rid ._fethods, edited by Jan Mandel, et. al., SIAM,

Philadelphia, Pa, pp. 273-2S5, 19S9.

[9] Hills, R. G., I. Porro, D. B. Hudson, and P. J. Wierenga, Modeling One-

Dimensional Infiltration Into Very Dry Soils, 1, Model Development and Eval-

uation, }Vater Resour. Res., \531. 25 Nurn. 6, pp. 1259-1269, June 1989a.

[10] Hills, R. G., I. Porro, D. B. Hudson, and P. J. Wierenga, Modeling One-

Dimensional Infiltration IntrO \2'ry Dry Soils, 2, Estimation of the Soil Water

Parameters and Model Predicti(ms, lT.%tter Resour. ires., Vol. 25 Num. 6, pp.

1271-1282, June 19S9b.

[11] Jesperson, D. C., Multiglid _Ic'tllods for Partial Differential Equations, Studies

in Numerical Analysis, Genc- G. Golub, editor, MAA Studies in Mathematics,

24, Mathematical Association of America, Washington D. C., 1984.

[12] Lee, H. N., and R. E. Meyers, On Time Dependent Numerical Technique,

Comp. and Math. xvith Appls., Vol. 6, pp. 61-65, Pergammon Press Ltd.,

Great Britain, 1980.

[13] Wesseling, P., A Robust and EfI:icicnt Multigrid Method, Lecture 5rotes in

Mathematics: :'_Iulti-Grid 3/'crliods, W. Hackbusch and U. Trottenberg, edi-

tors, Springer-Verlag, New York, 1982.

115

